.. _examples-particlestest: **************** particlesTest.py **************** You can view and download this file on Github: `particlesTest.py `_ .. code-block:: python :linenos: #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # This is an EXUDYN example # # Details: test with parallel computation and particles # # Author: Johannes Gerstmayr # Date: 2021-11-01 # Revised: 2024-03-24 # # Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details. # #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import exudyn as exu from exudyn.itemInterface import * from exudyn.utilities import * #includes itemInterface and rigidBodyUtilities import exudyn.graphics as graphics #only import if it does not conflict from exudyn.graphicsDataUtilities import * import numpy as np SC = exu.SystemContainer() mbs = SC.AddSystem() #create an environment for mini example nGround = mbs.AddNode(NodePointGround(referenceCoordinates=[0,0,0])) #mLast = mbs.AddMarker(MarkerNodePosition(nodeNumber=nGround)) np.random.seed(1) #always get same results L = 1 n = 4000 #*8*4 #32*8*8 a = L*0.25 radius = 0.35*a m = 0.05 k = 4e4 #4e3 needs h=1e-4 d = 0.00005*k markerList = [] radiusList = [] gDataList = [] rb = 30*L H = 8*L pos0 = [0,-rb-0.5*H,0] pos1 = [-rb-H,0,0] pos2 = [ rb+H,0,0] posList=[pos0,pos1,pos2] for pos in posList: #gDataList += [{'type':'Circle','position':pos,'radius':rb, 'color':graphics.color.grey}] gDataList += [graphics.Cylinder(pAxis=pos, vAxis=[0,0,0.1], radius=rb, color= graphics.color.grey, nTiles=200)] #gDataList += [GraphicsDataRectangle(-1.2*H,-H*0.75,1.2*H,10*H,color=graphics.color.red)] nMass = mbs.AddNode(NodePointGround(referenceCoordinates=pos)) #oMass = mbs.AddObject(MassPoint(physicsMass=m, nodeNumber=nMass)) mThis = mbs.AddMarker(MarkerNodePosition(nodeNumber=nMass)) markerList += [mThis] radiusList += [rb] oGround=mbs.AddObject(ObjectGround(referencePosition= [0,0,0], visualization=VObjectGround(graphicsData=gDataList))) ns = 20 gDataSphere = [] for i in range(ns): gRad = radius*(0.75+0.4*(i/ns)) gSphere = graphics.Cylinder(pAxis=[0,0,-0.25], vAxis=[0,0,0.5], radius=gRad, color=graphics.color.blue, nTiles=12) gSphere2 = graphics.Cylinder(pAxis=[0,0,-0.3], vAxis=[0,0,0.6], radius=0.8*gRad, color=graphics.color.steelblue, nTiles=10) gDataSphere += [[gSphere, gSphere2]] print("start create: number of masses =",n) for i in range(n): if (i%20000 == 0): print("create mass",i) offy = 0 row = 32*2 offy = -2*L-a*0+int(i/row)*a+a*0.2*np.random.random(1)[0] valueRand = np.random.random(1)[0] gRad = radius*(0.75+0.4*valueRand) nMass = mbs.AddNode(NodePoint(referenceCoordinates=[-0.6*a-H + (i%row+1)*a+0.2*a*np.random.random(1)[0],offy,0], initialVelocities=[0,-5,0])) oMass = mbs.AddObject(MassPoint(physicsMass=m, nodeNumber=nMass, #visualization=VMassPoint(graphicsData=[gSphere,gSphere2]) visualization=VMassPoint(graphicsData=gDataSphere[int(valueRand*ns)]) )) mThis = mbs.AddMarker(MarkerNodePosition(nodeNumber=nMass)) mbs.AddLoad(Force(markerNumber=mThis, loadVector= [0,-m*9.81,0])) markerList += [mThis] radiusList += [gRad] mLast = mThis print("finish create") if True: gContact = mbs.AddGeneralContact() gContact.verboseMode = 1 for i in range(len(markerList)): m = markerList[i] r = radiusList[i] gContact.AddSphereWithMarker(m, radius=r, contactStiffness=k, contactDamping=d, frictionMaterialIndex=-1) ssx = int(sqrt(n)+1) #search tree size ssy = ssx #search tree size gContact.SetFrictionPairings(np.eye(1)) gContact.SetSearchTreeCellSize(numberOfCells=[ssx,ssy,1]) gContact.SetSearchTreeBox(pMin=np.array([-1.2*H,-0.75*H,0]), pMax=np.array([1.2*H,10*H,1])) mbs.Assemble() print("finish gContact") tEnd = 20 stepSize = 0.0005 simulationSettings = exu.SimulationSettings() simulationSettings.linearSolverType = exu.LinearSolverType.EigenSparse #simulationSettings.solutionSettings.writeSolutionToFile = True simulationSettings.solutionSettings.writeSolutionToFile = True simulationSettings.solutionSettings.solutionWritePeriod = 0.04 simulationSettings.displayComputationTime = True #simulationSettings.displayStatistics = True simulationSettings.timeIntegration.verboseMode = 1 simulationSettings.parallel.numberOfThreads = 8 simulationSettings.timeIntegration.newton.numericalDifferentiation.forODE2 = False simulationSettings.timeIntegration.newton.useModifiedNewton = False SC.visualizationSettings.general.graphicsUpdateInterval=0.1 SC.visualizationSettings.general.circleTiling=200 SC.visualizationSettings.general.drawCoordinateSystem=False SC.visualizationSettings.loads.show=False SC.visualizationSettings.window.renderWindowSize=[1600,1200] SC.visualizationSettings.openGL.multiSampling = 4 simulate=True if simulate: useGraphics = True if useGraphics: exu.StartRenderer() if 'renderState' in exu.sys: SC.SetRenderState(exu.sys['renderState']) # mbs.WaitForUserToContinue() simulationSettings.timeIntegration.numberOfSteps = int(tEnd/stepSize) simulationSettings.timeIntegration.endTime = tEnd simulationSettings.timeIntegration.explicitIntegration.computeEndOfStepAccelerations = False #increase performance, accelerations less accurate mbs.SolveDynamic(simulationSettings, solverType=exu.DynamicSolverType.ExplicitMidpoint) # print(gContact) if useGraphics: SC.WaitForRenderEngineStopFlag() exu.StopRenderer() #safely close rendering window! else: SC.visualizationSettings.general.autoFitScene = False SC.visualizationSettings.general.graphicsUpdateInterval=0.5 sol = LoadSolutionFile('particles.txt') mbs.SolutionViewer(sol)