Flexible body -- FFRF tutorial ============================== The following tutorial includes flexible bodies, using the floating frame of reference formulation (FFRF), including Netgen and NGsolve for mesh and finite element data generation and uses modal reduction for simulation. The tutorial will set up a body with Hurty-Craig-Bampton modes, giving a simple flexible pendulum meshed hinged with a revolute joint. .. _fig-tutorial-ffrfpendulum: .. figure:: ../theDoc/figures/TutorialFFRFpendulum.png :width: 400 Screen shot of pendulum modeled with floating frame of reference formulation, using HCB modes, and meshed with Netgen. We import the exudyn library, utilities, and other necessary modules: .. code-block:: python import exudyn as exu from exudyn.utilities import * # includes itemInterface and rigidBodyUtilities import exudyn.graphics as graphics # only import if it does not conflict from exudyn.FEM import * import numpy as np import time import ngsolve as ngs from netgen.meshing import * from netgen.csg import * Next, we need a \ ``SystemContainer``\ , which contains all computable systems and adds a new MainSystem \ ``mbs``\ : .. code-block:: python SC = exu.SystemContainer() mbs = SC.AddSystem() Define the parameters and setup the Netgen mesh, using Netgen's CSG geometry. We create a simple brick in order to simplify the application of boundary interfaces and joints: .. code-block:: python useGraphics = True fileName = 'testData/netgenBrick' # for load/save of FEM data a = 0.025 # height/width of beam b = a h = 0.5 * a L = 1 # Length of beam nModes = 8 rho = 1000 Emodulus = 1e7 * 10 nu = 0.3 meshCreated = False meshOrder = 1 # use order 2 for higher accuracy, but more unknowns geo = CSGeometry() block = OrthoBrick(Pnt(0, -a, -b), Pnt(L, a, b)) geo.Add(block) mesh = ngs.Mesh(geo.GenerateMesh(maxh=h)) mesh.Curve(1) When creating the geometry and mesh, we sometimes would like to verify that with Netgen's GUI. In Jupyter, this works smoother with \ ``webgui_jupyter_widgets``\ -- see the Netgen documention. Here we use a simple loop, which has to set \ ``True``\ if visualization shall run: .. code-block:: python if False: # set this to true, if you want to visualize the mesh inside netgen/ngsolve import netgen.gui ngs.Draw(mesh) for i in range(10000000): netgen.Redraw() # this makes the window interactive time.sleep(0.05) Use the FEM interface to import the FEM model and create the FFRF reduced-order data stored in fem. Note that on importing the FEM structure from NGsolve (the FEM-module and solver of Netgen), we have to specify the mechanical properties related to the mesh: .. code-block:: python fem = FEMinterface() [bfM, bfK, fes] = fem.ImportMeshFromNGsolve(mesh, density=rho, youngsModulus=Emodulus, poissonsRatio=nu, meshOrder=meshOrder) We could now just compute eigenmodes of the free bodies. However, as mentioned in the theory part, they do not respect boundary conditions and lead to low accuracy. Therefore, we use Hurty-Craig-Bampton modes. For them, we have to define boundary interfaces given as lists of node numbers as well as weights. We can use convenient functions from the \ ``FEMinterface``\ class to retrieve nodes from planar or cylindrical surfaces (or we may define them in the finite element model ourselves): .. code-block:: python pLeft = [0, -a, -b] pRight = [L, -a, -b] nTip = fem.GetNodeAtPoint(pRight) #for sensor nodesLeftPlane = fem.GetNodesInPlane(pLeft, [-1, 0, 0]) weightsLeftPlane = fem.GetNodeWeightsFromSurfaceAreas(nodesLeftPlane) nodesRightPlane = fem.GetNodesInPlane(pRight, [-1, 0, 0]) weightsRightPlane = fem.GetNodeWeightsFromSurfaceAreas(nodesRightPlane) We define a list of boundaries, which are then passed to the function which computes modes. Note that by default the first boundary modes are eliminated as they are fixed to the reference frame of the FFRF object: .. code-block:: python boundaryList = [nodesLeftPlane] print("nNodes=", fem.NumberOfNodes()) print("compute HCB modes... ") start_time = time.time() fem.ComputeHurtyCraigBamptonModes(boundaryNodesList=boundaryList, nEigenModes=nModes, useSparseSolver=True, computationMode=HCBstaticModeSelection.RBE2) print("HCB modes needed Compute stress modes for postprocessing, which is not needed for simulation, but useful for postprocessing: .. code-block:: python if True: mat = KirchhoffMaterial(Emodulus, nu, rho) varType = exu.OutputVariableType.StressLocal print("ComputePostProcessingModes ... (may take a while)") start_time = time.time() fem.ComputePostProcessingModesNGsolve(fes, material=mat, outputVariableType=varType) print(" ... needed SC.visualizationSettings.contour.reduceRange = False SC.visualizationSettings.contour.outputVariable = varType SC.visualizationSettings.contour.outputVariableComponent = 0 # x-component else: SC.visualizationSettings.contour.outputVariable = exu.OutputVariableType.DisplacementLocal SC.visualizationSettings.contour.outputVariableComponent = 1 Having all data prepared now, we create the CMS element which is an object added then to \ ``mbs``\ : .. code-block:: python print("create CMS element ...") cms = ObjectFFRFreducedOrderInterface(fem) objFFRF = cms.AddObjectFFRFreducedOrder(mbs, positionRef=[0, 0, 0], initialVelocity=[0, 0, 0], initialAngularVelocity=[0, 0, 0], gravity=[0, -9.81, 0], color=[0.1, 0.9, 0.1, 1.]) Add markers and revolute joint, using a superelement marker: .. code-block:: python nodeDrawSize = 0.0025 # for joint drawing mRB = mbs.AddMarker(MarkerNodeRigid(nodeNumber=objFFRF['nRigidBody'])) oGround = mbs.AddObject(ObjectGround(referencePosition=[0, 0, 0])) leftMidPoint = [0, 0, 0] mGround = mbs.AddMarker(MarkerBodyRigid(bodyNumber=oGround, localPosition=leftMidPoint)) mLeft = mbs.AddMarker(MarkerSuperElementRigid(bodyNumber=objFFRF['oFFRFreducedOrder'], meshNodeNumbers=np.array(nodesLeftPlane), weightingFactors=weightsLeftPlane)) mbs.AddObject(GenericJoint(markerNumbers=[mGround, mLeft], constrainedAxes=[1, 1, 1, 1, 1, 1 * 0], visualization=VGenericJoint(axesRadius=0.1 * a, axesLength=0.1 * a))) Note that the marker is using weights, which are needed to compute accurate average (midpoint) positions from the non-uniform triangular surface mesh. Now we finally add a sensor and assemble the system: .. code-block:: python fileDir = 'solution/' sensTipDispl = mbs.AddSensor(SensorSuperElement(bodyNumber=objFFRF['oFFRFreducedOrder'], meshNodeNumber=nTip, fileName=fileDir + 'nMidDisplacementCMS' + str(nModes) + 'Test.txt', outputVariableType=exu.OutputVariableType.Displacement)) mbs.Assemble() Set simulation settings and run the simulation: .. code-block:: python simulationSettings = exu.SimulationSettings() SC.visualizationSettings.nodes.defaultSize = nodeDrawSize SC.visualizationSettings.nodes.drawNodesAsPoint = False SC.visualizationSettings.connectors.defaultSize = 2 * nodeDrawSize SC.visualizationSettings.nodes.show = False SC.visualizationSettings.sensors.show = True SC.visualizationSettings.sensors.defaultSize = 0.01 SC.visualizationSettings.markers.show = False SC.visualizationSettings.loads.drawSimplified = False h = 1e-3 tEnd = 4 simulationSettings.timeIntegration.numberOfSteps = int(tEnd / h) simulationSettings.timeIntegration.endTime = tEnd simulationSettings.timeIntegration.verboseMode = 1 simulationSettings.timeIntegration.newton.useModifiedNewton = True simulationSettings.solutionSettings.sensorsWritePeriod = h simulationSettings.timeIntegration.generalizedAlpha.spectralRadius = 0.8 simulationSettings.displayComputationTime = True mbs.SolveDynamic(simulationSettings=simulationSettings) uTip = mbs.GetSensorValues(sensTipDispl)[1] print("nModes=", nModes, ", tip displacement=", uTip) mbs.SolutionViewer() When the solution viewer starts, it should show the stresses in a flexible swinging pendulum, see \ :numref:`fig-tutorial-ffrfpendulum`\ . NOTE: this tutorial has been mostly created with ChatGPT-4, and curated hereafter!