Nomenclature for system equations of motion and solvers
Using the basic notation for coordinates in Section Notation, we use the following quantities and symbols for equations of motion and solvers:
quantity
|
symbol
|
description
|
---|---|---|
number of ODE2 coordinates
|
\(n\)
|
|
number of ODE1 coordinates
|
\(n_\FO\)
|
|
number of AE coordinates
|
\(m\)
|
|
number of system coordinates
|
\(n_{\SYS}\)
|
SYSN
|
ODE2 coordinates
|
\({\mathbf{q}} = [q_0,\, \ldots,\, q_{n_q}]\tp\)
|
ODE2, displacement-based coordinates (could also be rotation or deformation coordinates)
|
ODE2 velocities
|
\(\vel = \dot {\mathbf{q}} = [\dot q_0,\, \ldots,\, \dot q_{n_q}]\tp\)
|
ODE2 velocity coordinates
|
ODE2 accelerations
|
\(\ddot {\mathbf{q}} = [\ddot q_0,\, \ldots,\, \ddot q_{n_q}]\tp\)
|
ODE2 acceleration coordinates
|
ODE1 coordinates
|
\({\mathbf{y}} = [y_0,\, \ldots,\, y_{n_y}]\tp\)
|
vector of \(n_y\) coordinates for ODE1
|
ODE1 velocities
|
\(\dot {\mathbf{y}} = [\dot y_0,\, \ldots,\, \dot y_{n_y}]\tp\)
|
vector of \(n\) velocities for ODE1
|
ODE2 Lagrange multipliers
|
\(\tlambda = [\lambda_0,\, \ldots,\, \lambda_m]\tp\)
|
|
data coordinates
|
\({\mathbf{x}} = [x_0,\, \ldots,\, x_l]\tp\)
|
vector of \(l\) data coordinates in any configuration
|
\({\mathbf{f}}_\SO\in \Rcal^{n_q}\)
|
right-hand-side of ODE2 equations; (all terms except mass matrix \(\times\) acceleration and joint reaction forces)
|
|
\({\mathbf{f}}_\SO\in \Rcal^{n_y}\)
|
right-hand-side of ODE1 equations
|
|
\({\mathbf{g}}\in \Rcal^{m}\)
|
algebraic equations
|
|
mass matrix
|
\({\mathbf{M}}\in \Rcal^{n_q \times n_q}\)
|
mass matrix, only for ODE2 equations
|
(tangent) stiffness matrix
|
\({\mathbf{K}}\in \Rcal^{n_q \times n_q}\)
|
includes all derivatives of \({\mathbf{f}}_\SO\) w.r.t. \({\mathbf{q}}\)
|
damping/gyroscopic matrix
|
\({\mathbf{D}}\in \Rcal^{n_q \times n_q}\)
|
includes all derivatives of \({\mathbf{f}}_\SO\) w.r.t. \(\vel\)
|
step size
|
\(h\)
|
current step size in time integration method
|
residual
|
\({\mathbf{r}}_\SO \in \Rcal^{n_q}\), \({\mathbf{r}}_\FO \in \Rcal^{n_y}\), \({\mathbf{r}}_\AE \in \Rcal^{m}\)
|
residuals for each type of coordinates within static/time integration – depends on method
|
system residual
|
\({\mathbf{r}}\in \Rcal^{n_s}\)
|
system residual – depends on method
|
system coordinates
|
\(\txi\)
|
system coordinates and unknowns for solver; definition depends on solver
|
Jacobian
|
\({\mathbf{J}}\in \Rcal^{n_s \times n_s}\)
|
system Jacobian – depends on method
|