NodePointSlope23
A 3D point/slope vector node for spatial, shear and cross-section deformable ANCF (absolute nodal coordinate formulation) beam elements; the node has 9 ODE2 degrees of freedom (3 for displacement of point node and 2 \(\times\) 3 for the slope vectors ‘slopeY’ and ‘slopeZ’); all coordinates lead to second order differential equations; the slopeY vector defines the directional derivative w.r.t the local axial (y) coordinate, etc.; the slopeY vector reads \({\mathbf{r}}_y^\prime=[0\;\;1\;\;0]^T\) and slopeZ gets \({\mathbf{r}}_z^\prime=[0\;\;0\;\;1]^T\).
Additional information for NodePointSlope23:
- This
Node
has/provides the following types =Position
,Orientation
The item NodePointSlope23 with type = ‘PointSlope23’ has the following parameters:
- name [type = String, default = ‘’]:node’s unique name
- referenceCoordinates [type = Vector9D, size = 9, default = [0.,0.,0.,1.,0.,0.,1.,0.,0.]]:reference coordinates (x-pos,y-pos,z-pos; x-slopey, y-slopey, z-slopey; x-slopez, y-slopez, z-slopez) of node; global position of node without displacement
- initialCoordinates [type = Vector9D, size = 9, default = [0.,0.,0.,0.,0.,0.,0.,0.,0.]]:initial displacement coordinates relative to reference coordinates
- initialVelocities [type = Vector9D, size = 9, default = [0.,0.,0.,0.,0.,0.,0.,0.,0.]]:initial velocity coordinates
- visualization [type = VNodePointSlope23]:parameters for visualization of item
The item VNodePointSlope23 has the following parameters:
- show [type = Bool, default = True]:set true, if item is shown in visualization and false if it is not shown
- drawSize [type = float, default = -1.]:drawing size (diameter, dimensions of underlying cube, etc.) for item; size == -1.f means that default size is used
- color [type = Float4, size = 4, default = [-1.,-1.,-1.,-1.]]:Default RGBA color for nodes; 4th value is alpha-transparency; R=-1.f means, that default color is used
DESCRIPTION of NodePointSlope23
The following output variables are available as OutputVariableType in sensors, Get…Output() and other functions:
Position
: \(\LU{0}{{\mathbf{p}}}\cConfig = \LU{0}{[p_0,\, p_1,\, p_2]}\cConfig\tp\)global 3D position vector of node (=displacement+reference position)Displacement
: \(\LU{0}{{\mathbf{u}}}\cConfig = \LU{0}{[q_0,\, q_1,\, q_2]}\cConfig\tp\)global 3D displacement vector of nodeVelocity
: \(\LU{0}{{\mathbf{a}}}\cConfig = \LU{0}{[\dot q_0,\,\dot q_1,\,\dot q_2]}\cConfig\tp\)global 3D velocity vector of nodeAcceleration
: \(\LU{0}{{\mathbf{a}}}\cConfig = \LU{0}{[\ddot q_0,\,\ddot q_1,\,\ddot q_2]}\cConfig\tp\)global 3D acceleration vector of nodeCoordinates
:coordinate vector of node (relative to reference configuration)Coordinates\_t
:velocity coordinates vector of nodeCoordinates\_tt
:acceleration coordinates vector of nodeRotationMatrix
: \([A_{00},\,A_{01},\,A_{02},\,A_{10},\,\ldots,\,A_{21},\,A_{22}]\cConfig\tp\)vector with 9 components of the rotation matrix \(\LU{0b}{\Rot}\cConfig\) in row-major format, in any configuration; the rotation matrix transforms local (\(b\)) to global (0) coordinatesRotation
: \([\varphi_0,\,\varphi_1,\,\varphi_2]\tp\cConfig\)vector with 3 components of the Euler / Tait-Bryan angles in xyz-sequenceAngularVelocity
: \(\LU{0}{\tomega}\cConfig = \LU{0}{[\omega_0,\,\omega_1,\,\omega_2]}\cConfig\tp\)global 3D angular velocity vector of nodeAngularVelocityLocal
: \(\LU{b}{\tomega}\cConfig = \LU{b}{[\omega_0,\,\omega_1,\,\omega_2]}\cConfig\tp\)local (body-fixed) 3D angular velocity vector of node
Relevant Examples and TestModels with weblink:
ANCFBeamEigTest.py (TestModels/), ANCFBeamTest.py (TestModels/), geometricallyExactBeamTest.py (TestModels/), rightAngleFrame.py (TestModels/)
The web version may not be complete. For details, consider also the Exudyn PDF documentation : theDoc.pdf