laserScannerTest.py
You can view and download this file on Github: laserScannerTest.py
1#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2# This is an EXUDYN example
3#
4# Details: Simple vehicle model with 'rotating' laser scanner
5#
6# Author: Johannes Gerstmayr
7# Date: 2023-04-11
8#
9# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
10#
11#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
13import exudyn
14import exudyn as exu
15from exudyn.utilities import * #includes itemInterface and rigidBodyUtilities
16import exudyn.graphics as graphics #only import if it does not conflict
17from exudyn.robotics.utilities import AddLidar
18
19import numpy as np
20from math import sin, cos, tan
21
22useGraphics = True #without test
23#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24#you can erase the following lines and all exudynTestGlobals related operations if this is not intended to be used as TestModel:
25try: #only if called from test suite
26 from modelUnitTests import exudynTestGlobals #for globally storing test results
27 useGraphics = exudynTestGlobals.useGraphics
28except:
29 class ExudynTestGlobals:
30 pass
31 exudynTestGlobals = ExudynTestGlobals()
32#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
33#useGraphics=False
34
35SC = exu.SystemContainer()
36mbs = SC.AddSystem()
37
38g = [0,0,-9.81] #gravity in m/s^2
39
40doBreaking = False
41
42#++++++++++++++++++++++++++++++
43#wheel parameters:
44rhoWheel = 500 #density kg/m^3
45rWheel = 0.4 #radius of disc in m
46wWheel = 0.2 #width of disc in m, just for drawing
47p0Wheel = [0,0,rWheel] #origin of disc center point at reference, such that initial contact point is at [0,0,0]
48initialRotationCar = RotationMatrixZ(0)
49
50v0 = -5*0 #initial car velocity in y-direction
51omega0Wheel = [v0/rWheel,0,0] #initial angular velocity around z-axis
52
53#v0 = [0,0,0] #initial translational velocity
54#exu.Print("v0Car=",v0)
55
56#++++++++++++++++++++++++++++++
57#car parameters:
58p0Car = [0,0,rWheel] #origin of disc center point at reference, such that initial contact point is at [0,0,0]
59lCar = 3 #y-direction
60wCar = 3 #x-direction
61hCar = rWheel #z-direction
62mCar = 500
63omega0Car = [0,0,0] #initial angular velocity around z-axis
64v0Car = [0,-v0,0] #initial velocity of car center point
65
66#inertia for infinitely small ring:
67inertiaWheel = InertiaCylinder(density=rhoWheel, length=wWheel, outerRadius=rWheel, axis=0)
68#exu.Print(inertiaWheel)
69
70inertiaCar = InertiaCuboid(density=mCar/(lCar*wCar*hCar),sideLengths=[wCar, lCar, hCar])
71#exu.Print(inertiaCar)
72#
73rLidar = 0.5*rWheel
74pLidar1 = [-wCar*0.5-rLidar, lCar*0.5+rWheel+rLidar,hCar*0.5]
75pLidar2 = [ wCar*0.5+rLidar,-lCar*0.5-rWheel-rLidar,hCar*0.5]
76graphicsCar = [graphics.Brick(centerPoint=[0,0,0],size=[wCar-1.1*wWheel, lCar+2*rWheel, hCar],
77 color=graphics.color.steelblue)]
78graphicsCar += [graphics.Cylinder(pAxis=pLidar1, vAxis=[0,0,0.5*rLidar], radius=rLidar, clor=graphics.color.darkgrey)]
79graphicsCar += [graphics.Cylinder(pAxis=pLidar2, vAxis=[0,0,0.5*rLidar], radius=rLidar, clor=graphics.color.darkgrey)]
80
81#create car body:
82dictCar = mbs.CreateRigidBody(referencePosition=p0Car,
83 referenceRotationMatrix=initialRotationCar,
84 initialVelocity=v0Car,
85 initialAngularVelocity=omega0Car,
86 inertia=inertiaCar,
87 gravity=g,
88 graphicsDataList=graphicsCar,
89 returnDict=True)
90[nCar, bCar] = [dictCar['nodeNumber'], dictCar['bodyNumber']]
91
92markerCar = mbs.AddMarker(MarkerBodyRigid(bodyNumber=bCar, localPosition=[0,0,hCar*0.5]))
93
94
95markerCar1 = mbs.AddMarker(MarkerBodyRigid(bodyNumber=bCar, localPosition=pLidar1))
96markerCar2 = mbs.AddMarker(MarkerBodyRigid(bodyNumber=bCar, localPosition=pLidar2))
97
98
99nWheels = 4
100markerWheels=[]
101markerCarAxles=[]
102oRollingDiscs=[]
103sAngularVelWheels=[]
104
105# car setup:
106# ^Y, lCar
107# | W2 +---+ W3
108# | | |
109# | | + | car center point
110# | | |
111# | W0 +---+ W1
112# +---->X, wCar
113
114#ground body and marker
115LL = 8
116gGround = graphics.CheckerBoard(point=[0.25*LL,0.25*LL,0],size=2*LL)
117
118#obstacles:
119zz=1
120gGround = graphics.MergeTriangleLists(graphics.Brick(centerPoint=[0,8,0.5*zz],size=[2*zz,zz,1*zz], color=graphics.color.dodgerblue), gGround)
121gGround = graphics.MergeTriangleLists(graphics.Brick(centerPoint=[8,6,1.5*zz],size=[zz,2*zz,3*zz], color=graphics.color.dodgerblue), gGround)
122gGround = graphics.MergeTriangleLists(graphics.Brick(centerPoint=[4,-4,0.5*zz],size=[2*zz,zz,1*zz], color=graphics.color.dodgerblue), gGround)
123gGround = graphics.MergeTriangleLists(graphics.Cylinder(pAxis=[8,0,0],vAxis=[0,0,zz], radius=1.5, color=graphics.color.dodgerblue, nTiles=64), gGround)
124
125#walls:
126tt=0.2
127gGround = graphics.MergeTriangleLists(graphics.Brick(centerPoint=[0.25*LL,0.25*LL-LL,0.5*zz],size=[2*LL,tt,zz], color=graphics.color.dodgerblue), gGround)
128gGround = graphics.MergeTriangleLists(graphics.Brick(centerPoint=[0.25*LL,0.25*LL+LL,0.5*zz],size=[2*LL,tt,zz], color=graphics.color.dodgerblue), gGround)
129gGround = graphics.MergeTriangleLists(graphics.Brick(centerPoint=[0.25*LL-LL,0.25*LL,0.5*zz],size=[tt,2*LL,zz], color=graphics.color.dodgerblue), gGround)
130gGround = graphics.MergeTriangleLists(graphics.Brick(centerPoint=[0.25*LL+LL,0.25*LL,0.5*zz],size=[tt,2*LL,zz], color=graphics.color.dodgerblue), gGround)
131
132
133oGround = mbs.AddObject(ObjectGround(visualization=VObjectGround(graphicsData=[gGround])))
134mGround = mbs.AddMarker(MarkerBodyRigid(bodyNumber=oGround, localPosition=[0,0,0]))
135
136
137#%%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
138#set up general contact geometry where sensors measure
139[meshPoints, meshTrigs] = graphics.ToPointsAndTrigs(gGround)
140
141ngc = mbs.CreateDistanceSensorGeometry(meshPoints, meshTrigs, rigidBodyMarkerIndex=mGround, searchTreeCellSize=[8,8,1])
142
143#single sensor:
144# sDistanceSphere = mbs.CreateDistanceSensor(ngc, positionOrMarker=markerCar2, dirSensor=dirSensor2,
145# minDistance=0, maxDistance=maxDistance, measureVelocity=True,
146# cylinderRadius=0, storeInternal=True, addGraphicsObject=True,
147# selectedTypeIndex=exu.ContactTypeIndex.IndexTrigsRigidBodyBased,
148# color=graphics.color.red)
149
150maxDistance = 100 #max. distance of sensors; just large enough to reach everything; take care, in zoom all it will show this large area
151
152#note that lidar sensors seem to be drawn wrong in the initialization; however, this is because the initial distance
153# is zero which means that the sensor is drawn into the negative direction during initialization!!!
154sLidar = AddLidar(mbs, generalContactIndex=ngc, positionOrMarker=markerCar2, minDistance=0, maxDistance=maxDistance,
155 numberOfSensors=100,angleStart=1.*pi, angleEnd=2.5*pi, inclination=0,
156 lineLength=1, storeInternal=True, color=graphics.color.lawngreen )
157
158AddLidar(mbs, generalContactIndex=ngc, positionOrMarker=markerCar2, minDistance=0, maxDistance=maxDistance,
159 numberOfSensors=100,angleStart=1.*pi, angleEnd=2.5*pi, inclination=-4/180*pi,
160 lineLength=1, storeInternal=True, color=graphics.color.grey )
161
162sLidarInc = AddLidar(mbs, generalContactIndex=ngc, positionOrMarker=markerCar2, minDistance=0, maxDistance=maxDistance,
163 numberOfSensors=100,angleStart=1.*pi, angleEnd=2.5*pi, inclination= 4/180*pi,
164 lineLength=1, storeInternal=True, color=graphics.color.grey )
165
166AddLidar(mbs, generalContactIndex=ngc, positionOrMarker=markerCar2, minDistance=0, maxDistance=maxDistance,
167 numberOfSensors=100,angleStart=1.*pi, angleEnd=2.5*pi, inclination= 8/180*pi,
168 lineLength=1, storeInternal=True, color=graphics.color.grey )
169
170AddLidar(mbs, generalContactIndex=ngc, positionOrMarker=markerCar2, minDistance=0, maxDistance=maxDistance,
171 numberOfSensors=100,angleStart=1.*pi, angleEnd=2.5*pi, inclination=12/180*pi,
172 lineLength=1, storeInternal=True, color=graphics.color.grey )
173
174AddLidar(mbs, generalContactIndex=ngc, positionOrMarker=markerCar1, minDistance=0, maxDistance=maxDistance,
175 numberOfSensors=100,angleStart=0*pi, angleEnd=1.5*pi,
176 lineLength=1, storeInternal=True, color=graphics.color.red) #, rotation=RotationMatrixX(2/180*pi))
177
178#%%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
179
180if useGraphics:
181 sCarVel = mbs.AddSensor(SensorBody(bodyNumber=bCar, storeInternal=True, #fileName='solution/rollingDiscCarVel.txt',
182 outputVariableType = exu.OutputVariableType.Velocity))
183
184sPos=[]
185sTrail=[]
186sForce=[]
187
188
189for iWheel in range(nWheels):
190 frictionAngle = 0.25*np.pi #45°
191 if iWheel == 0 or iWheel == 3: #difference in diagonal
192 frictionAngle *= -1
193
194 #additional graphics for visualization of rotation (JUST FOR DRAWING!):
195 graphicsWheel = [graphics.Brick(centerPoint=[0,0,0],size=[wWheel*1.1,0.7*rWheel,0.7*rWheel], color=graphics.color.lightred)]
196 nCyl = 12
197 rCyl = 0.1*rWheel
198 for i in range(nCyl): #draw cylinders on wheels
199 iPhi = i/nCyl*2*np.pi
200 pAxis = np.array([0,rWheel*np.sin(iPhi),-rWheel*np.cos(iPhi)])
201 vAxis = [0.5*wWheel*np.cos(frictionAngle),0.5*wWheel*np.sin(frictionAngle),0]
202 vAxis2 = RotationMatrixX(iPhi)@vAxis
203 rColor = graphics.color.grey
204 if i >= nCyl/2: rColor = graphics.color.darkgrey
205 graphicsWheel += [graphics.Cylinder(pAxis=pAxis-vAxis2, vAxis=2*vAxis2, radius=rCyl,
206 color=rColor)]
207
208
209 dx = -0.5*wCar
210 dy = -0.5*lCar
211 if iWheel > 1: dy *= -1
212 if iWheel == 1 or iWheel == 3: dx *= -1
213
214 kRolling = 1e5
215 dRolling = kRolling*0.01
216
217 initialRotation = RotationMatrixZ(0)
218
219 #v0Wheel = Skew(omega0Wheel) @ initialRotationWheel @ [0,0,rWheel] #initial angular velocity of center point
220 v0Wheel = v0Car #approx.
221
222 pOff = [dx,dy,0]
223
224
225 #add wheel body
226 dict0 = mbs.CreateRigidBody(referencePosition=VAdd(p0Wheel,pOff),
227 referenceRotationMatrix=initialRotation,
228 initialVelocity=v0Wheel,
229 initialAngularVelocity=omega0Wheel,
230 inertia=inertiaWheel,
231 gravity=g,
232 graphicsDataList=graphicsWheel,
233 returnDict=True)
234 [n0, b0] = [dict0['nodeNumber'], dict0['bodyNumber']]
235
236 #markers for rigid body:
237 mWheel = mbs.AddMarker(MarkerBodyRigid(bodyNumber=b0, localPosition=[0,0,0]))
238 markerWheels += [mWheel]
239
240 mCarAxle = mbs.AddMarker(MarkerBodyRigid(bodyNumber=bCar, localPosition=pOff))
241 markerCarAxles += [mCarAxle]
242
243 lockedAxis0 = 0
244 if doBreaking: lockedAxis0 = 1
245 #if iWheel==0 or iWheel==1: freeAxis = 1 #lock rotation
246 mbs.AddObject(GenericJoint(markerNumbers=[mWheel,mCarAxle],rotationMarker1=initialRotation,
247 constrainedAxes=[1,1,1,lockedAxis0,1,1])) #revolute joint for wheel
248
249 #does not work, because revolute joint does not accept off-axis
250 #kSuspension = 1e4
251 #dSuspension = kSuspension*0.01
252 #mbs.AddObject(CartesianSpringDamper(markerNumbers=[mWheel,mCarAxle],stiffness=[0,0,kSuspension],damping=[0,0,dSuspension]))
253
254 nGeneric = mbs.AddNode(NodeGenericData(initialCoordinates=[0,0,0], numberOfDataCoordinates=3))
255 oRolling = mbs.AddObject(ObjectConnectorRollingDiscPenalty(markerNumbers=[mGround, mWheel], nodeNumber = nGeneric,
256 discRadius=rWheel, dryFriction=[1.,0.], dryFrictionAngle=frictionAngle,
257 dryFrictionProportionalZone=1e-1,
258 rollingFrictionViscous=0.2*0,
259 contactStiffness=kRolling, contactDamping=dRolling,
260 visualization=VObjectConnectorRollingDiscPenalty(discWidth=wWheel, color=graphics.color.blue)))
261 oRollingDiscs += [oRolling]
262
263 strNum = str(iWheel)
264 sAngularVelWheels += [mbs.AddSensor(SensorBody(bodyNumber=b0, storeInternal=True,#fileName='solution/rollingDiscAngVelLocal'+strNum+'.txt',
265 outputVariableType = exu.OutputVariableType.AngularVelocityLocal))]
266
267 if useGraphics:
268 sPos+=[mbs.AddSensor(SensorBody(bodyNumber=b0, storeInternal=True,#fileName='solution/rollingDiscPos'+strNum+'.txt',
269 outputVariableType = exu.OutputVariableType.Position))]
270
271 sTrail+=[mbs.AddSensor(SensorObject(name='Trail'+strNum,objectNumber=oRolling, storeInternal=True,#fileName='solution/rollingDiscTrail'+strNum+'.txt',
272 outputVariableType = exu.OutputVariableType.Position))]
273
274 sForce+=[mbs.AddSensor(SensorObject(objectNumber=oRolling, storeInternal=True,#fileName='solution/rollingDiscForce'+strNum+'.txt',
275 outputVariableType = exu.OutputVariableType.ForceLocal))]
276
277
278torqueFactor = 100
279def UFBasicTorque(mbs, t, torque):
280 if t < 0.2:
281 return torque
282 else:
283 return [0,0,0]
284
285#takes as input the translational and angular velocity and outputs the velocities for all 4 wheels
286#wheel axis is mounted at x-axis; positive angVel rotates CCW in x/y plane viewed from top
287# car setup:
288# ^Y, lCar
289# | W2 +---+ W3
290# | | |
291# | | + | car center point
292# | | |
293# | W0 +---+ W1
294# +---->X, wCar
295#values given for wheel0/3: frictionAngle=-pi/4, wheel 1/2: frictionAngle=pi/4; dryFriction=[1,0] (looks in lateral (x) direction)
296#==>direction of axis of roll on ground of wheel0: [1,-1] and of wheel1: [1,1]
297def MecanumXYphi2WheelVelocities(xVel, yVel, angVel, R, Lx, Ly):
298 LxLy2 = (Lx+Ly)/2
299 mat = (1/R)*np.array([[ 1,-1, LxLy2],
300 [-1,-1,-LxLy2],
301 [-1,-1, LxLy2],
302 [ 1,-1,-LxLy2]])
303 return mat @ [xVel, yVel, angVel]
304
305#compute velocity trajectory
306def ComputeVelocity(t):
307 vel = [0,0,0] #vx, vy, angVel; these are the local velocities!!!
308 f=1
309 if t < 4:
310 vel = [f,0,0]
311 elif t < 8:
312 vel = [0,f,0]
313 elif t < 16:
314 vel = [0,0,0.125*np.pi]
315 elif t < 20:
316 vel = [f,0,0]
317 return vel
318
319pControl = 500
320#compute controlled torque; torque[0] contains wheel number
321def UFtorque(mbs, t, torque):
322 iWheel = int(torque[0]) #wheel number
323
324 v = ComputeVelocity(t) #desired velocity
325 vDesired = MecanumXYphi2WheelVelocities(v[0],v[1],v[2],rWheel,wCar,lCar)[iWheel]
326 vCurrent = mbs.GetSensorValues(sAngularVelWheels[iWheel])[0] #local x-axis = wheel axis
327
328 cTorque = pControl*(vDesired-vCurrent)
329 #print("W",iWheel, ": vDes=", vDesired, ", vCur=", vCurrent, ", torque=", cTorque)
330
331 return [cTorque,0,0]
332
333if False:
334 mbs.AddLoad(Torque(markerNumber=markerWheels[0],loadVector=[ torqueFactor,0,0], bodyFixed = True, loadVectorUserFunction=UFBasicTorque))
335 mbs.AddLoad(Torque(markerNumber=markerWheels[1],loadVector=[-torqueFactor,0,0], bodyFixed = True, loadVectorUserFunction=UFBasicTorque))
336 mbs.AddLoad(Torque(markerNumber=markerWheels[2],loadVector=[-torqueFactor,0,0], bodyFixed = True, loadVectorUserFunction=UFBasicTorque))
337 mbs.AddLoad(Torque(markerNumber=markerWheels[3],loadVector=[ torqueFactor,0,0], bodyFixed = True, loadVectorUserFunction=UFBasicTorque))
338
339if True:
340 for i in range(4):
341 mbs.AddLoad(Torque(markerNumber=markerWheels[i],loadVector=[ i,0,0], bodyFixed = True, loadVectorUserFunction=UFtorque))
342
343#mbs.AddSensor(SensorObject(objectNumber=oRolling, fileName='solution/rollingDiscTrailVel.txt',
344# outputVariableType = exu.OutputVariableType.VelocityLocal))
345
346
347# print('start')
348mbs.Assemble()
349# print('end')
350
351simulationSettings = exu.SimulationSettings() #takes currently set values or default values
352
353tEnd = 0.5
354if useGraphics:
355 tEnd = 20#24
356
357h=0.002
358
359simulationSettings.timeIntegration.numberOfSteps = int(tEnd/h)
360simulationSettings.timeIntegration.endTime = tEnd
361#simulationSettings.solutionSettings.solutionWritePeriod = 0.01
362simulationSettings.solutionSettings.sensorsWritePeriod = 0.1
363simulationSettings.timeIntegration.verboseMode = 1
364simulationSettings.displayComputationTime = False
365simulationSettings.displayStatistics = False
366
367simulationSettings.timeIntegration.generalizedAlpha.useIndex2Constraints = True
368simulationSettings.timeIntegration.generalizedAlpha.useNewmark = True
369simulationSettings.timeIntegration.generalizedAlpha.spectralRadius = 0.5#0.5
370simulationSettings.timeIntegration.generalizedAlpha.computeInitialAccelerations=True
371
372simulationSettings.timeIntegration.newton.useModifiedNewton = True
373simulationSettings.timeIntegration.discontinuous.ignoreMaxIterations = False #reduce step size for contact switching
374simulationSettings.timeIntegration.discontinuous.iterationTolerance = 0.1
375simulationSettings.linearSolverType=exu.LinearSolverType.EigenSparse
376
377speedup=True
378if speedup:
379 simulationSettings.timeIntegration.discontinuous.ignoreMaxIterations = False #reduce step size for contact switching
380 simulationSettings.timeIntegration.discontinuous.iterationTolerance = 0.1
381
382SC.visualizationSettings.general.graphicsUpdateInterval = 0.01
383SC.visualizationSettings.nodes.show = True
384SC.visualizationSettings.nodes.drawNodesAsPoint = False
385SC.visualizationSettings.nodes.showBasis = True
386SC.visualizationSettings.nodes.basisSize = 0.015
387
388SC.visualizationSettings.openGL.lineWidth = 2
389SC.visualizationSettings.openGL.shadow = 0.3
390SC.visualizationSettings.openGL.multiSampling = 4
391SC.visualizationSettings.openGL.perspective = 0.7
392# useGraphics=True
393#create animation:
394if useGraphics:
395 SC.visualizationSettings.window.renderWindowSize=[1920,1080]
396 SC.visualizationSettings.openGL.multiSampling = 4
397
398 if False: #save images
399 simulationSettings.solutionSettings.sensorsWritePeriod = 0.01 #to avoid laggy visualization
400 simulationSettings.solutionSettings.recordImagesInterval = 0.04
401 SC.visualizationSettings.exportImages.saveImageFileName = "images/frame"
402
403if useGraphics:
404 exu.StartRenderer()
405 mbs.WaitForUserToContinue()
406
407mbs.SolveDynamic(simulationSettings)
408
409p0=mbs.GetObjectOutputBody(bCar, exu.OutputVariableType.Position, localPosition=[0,0,0])
410
411u = 0+p0[0]
412for s in sLidar+sLidarInc:
413 u += mbs.GetSensorValues(s)
414
415u/=len(sLidar+sLidarInc)*10
416
417exu.Print('solution of mecanumWheelRollingDiscTest=',u)
418exudynTestGlobals.testError = u - (0.27142672383243405) #2020-06-20: 0.2714267238324345
419exudynTestGlobals.testResult = u
420
421
422if useGraphics:
423 SC.WaitForRenderEngineStopFlag()
424 exu.StopRenderer() #safely close rendering window!
425
426##++++++++++++++++++++++++++++++++++++++++++++++q+++++++
427#plot results
428if useGraphics and False:
429
430
431 mbs.PlotSensor(sTrail, componentsX=[0]*4, components=[1]*4, title='wheel trails', closeAll=True,
432 markerStyles=['x ','o ','^ ','D '], markerSizes=12)
433 mbs.PlotSensor(sForce, components=[1]*4, title='wheel forces')