rollingDiscTangentialForces.py
You can view and download this file on Github: rollingDiscTangentialForces.py
1#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2# This is an EXUDYN example
3#
4# Details: Test for tangential forces of rolling disc
5#
6# Author: Johannes Gerstmayr, Michael Pieber
7# Date: 2024-04-29
8#
9# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
10#
11#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
13import exudyn as exu
14from exudyn.utilities import * #includes itemInterface and rigidBodyUtilities
15import exudyn.graphics as graphics #only import if it does not conflict
16
17import numpy as np
18
19useGraphics = True #without test
20#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
21#you can erase the following lines and all exudynTestGlobals related operations if this is not intended to be used as TestModel:
22try: #only if called from test suite
23 from modelUnitTests import exudynTestGlobals #for globally storing test results
24 useGraphics = exudynTestGlobals.useGraphics
25except:
26 class ExudynTestGlobals:
27 pass
28 exudynTestGlobals = ExudynTestGlobals()
29#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
30SC = exu.SystemContainer()
31mbs = SC.AddSystem()
32
33
34#Dimensions
35mass = 30 #kg
36r = 1.8 #m
37d = 3 #m
38kAB=1.2 #inertia radius
39
40JradAB = mass*kAB**2
41#wheel
42w=0.1 #for drawing
43
44
45
46
47#####################################
48Fn=400 #N
49g=9.81
50
51omegaY = np.sqrt(r*(Fn-mass*g)/JradAB)
52omegaZ = d/r*omegaY #rad/s # = angular velocity omega_y
53
54exu.Print('omegaY=',omegaY)
55exu.Print('omegaZ=',omegaZ)
56
57
58theta = np.array([[mass*r**2,0,0], [0,mass*r**2,0], [0,0,JradAB]])
59wV= np.array([0,omegaY*0,-omegaZ])
60
61
62wL=np.array([0,omegaY,0])
63M=Skew(wL)@theta@wV
64
65exu.Print('necessary torque=',d*(Fn-mass*g), ', gyro torque=', -M[0])
66exu.Print(d*(mass*g-Fn))
67#centrifugal force in simulation: -396.37
68exu.Print('centrifugal force:',d * omegaY**2 * mass)
69
70#%%
71#####################################
72#####################################
73omegaZ=omegaY*1
74omegaX=-d/r*omegaZ #rad/s angular velocity of the wheel
75g = [0,0,-9.81] #gravity
76bodyDim = [d,0.1,0.1] #body dimensions
77
78
79v0 = omegaZ * d
80v0Vec = np.array([0,v0,0])
81p0 = [0,0,0] #origin of pendulum
82# p1 = [bodyDim[0],0,0] #origin of wheel
83
84pMid0 = [d*0.5,0,r] #center of mass, body0
85pMid1 = [d,0,r] #center of mass, body1
86
87theta = np.array([[JradAB,0,0], [0,mass*r**2,0], [0,0,mass*r**2]])
88iWheel = RigidBodyInertia(mass,theta,p0)
89# exu.Print(iWheel)
90iCube = InertiaCuboid(1, sideLengths=[0.1,0.1,0.1])
91# exu.Print(iCube)
92
93
94w1=np.array([-omegaZ,0,omegaX]) #wheel + frame
95w2=np.array([0,0,omegaX]) #frame
96
97M=Skew(w2)@theta@w1 #possible for symmetric rotor, but dangerous!
98
99Mgyro = w2[2]*theta[0,0]*w1[0] #rotor solution; condition: rotor is symmetric
100
101exu.Print('omega1 x (Theta * omega2) = ',M[1])
102exu.Print('Mgyro = ',Mgyro)
103exu.Print('omega1 x (Theta * omega1) = ',Skew(w1)@theta@w1)
104exu.Print(d*(-Fn+mass*9.81))
105
106
107###############################################################################
108#
109
110
111#initial acceleration:
112angAcc = np.array([0., -14.28472222, 0. ])
113exu.Print('Theta * angAcc = ',theta@angAcc)
114exu.Print('Theta * angAcc + omega1 x (Theta * omega1) = ',theta@angAcc + Skew(w1)@theta@w1)
115
116planeNormal = RotationMatrixX(0.*pi)@np.array([0,0,1])
117vOff = -r*planeNormal+[0,0,r]
118
119#graphics for body
120graphicsBody = graphics.RigidLink(p0=[-0.5*bodyDim[0],0,0], p1=[0.5*bodyDim[0],0,0],
121 axis1=[0,0,1], radius=[0.01,0.01],
122 thickness = 0.2, width = [0.2,0.2], color=graphics.color.lightred)
123
124#%%
125[n0,b0]=AddRigidBody(mainSys = mbs,
126 inertia = iCube,
127 nodeType = str(exu.NodeType.RotationEulerParameters),
128 position = pMid0,
129 rotationMatrix = np.diag([1,1,1]),
130 velocity = list(0.5*v0Vec),
131 angularVelocity = [0,0,omegaZ],
132 #gravity = g,
133 graphicsDataList = [graphicsBody])
134
135
136graphicsBodyWheel = graphics.Brick(centerPoint=[0,0,0],size=[w*2,1.4*r,1.4*r], color=graphics.color.lightred)
137[n1,bWheel]=AddRigidBody(mainSys = mbs,
138 inertia = iWheel,
139 nodeType = str(exu.NodeType.RotationEulerParameters),
140 position = pMid1,
141 velocity = list(v0Vec),
142 rotationMatrix = np.diag([1,1,1]),
143 angularVelocity = [omegaX,0,omegaZ],
144 gravity = g,
145 graphicsDataList = [graphicsBodyWheel])
146
147
148
149#ground body and marker
150#graphicsPlane = graphics.Brick(centerPoint=[0,0,-0.1],size=[3*d,3*d,0.2], color=graphics.color.grey)
151graphicsPlane = graphics.CheckerBoard(point=vOff, normal=planeNormal, size=3*d)
152
153oGround = mbs.AddObject(ObjectGround(visualization=VObjectGround(graphicsData=[graphicsPlane])))
154markerSupportGround = mbs.AddMarker(MarkerBodyRigid(bodyNumber=oGround, localPosition=[0,0,r]))
155
156#markers for rigid body:
157markerBody0J0 = mbs.AddMarker(MarkerBodyRigid(bodyNumber=b0, localPosition=[-0.5*bodyDim[0],0,0]))
158markerBody0J1 = mbs.AddMarker(MarkerBodyRigid(bodyNumber=b0, localPosition=[0.5*bodyDim[0],0,0]))
159
160markerBodyWheel = mbs.AddMarker(MarkerBodyRigid(bodyNumber=bWheel, localPosition=[0,0,0]))
161
162mbs.AddObject(SphericalJoint(markerNumbers=[markerSupportGround,markerBody0J0],
163 constrainedAxes=[1,1,1],
164 visualization=VObjectJointSpherical(jointRadius=0.025)))
165
166mbs.AddObject(GenericJoint(markerNumbers=[markerBody0J1, markerBodyWheel],
167 constrainedAxes=[0*1,1,1,0,1,1],
168 visualization=VObjectJointGeneric(axesRadius=0.01, axesLength=0.1)))
169
170# rolling disc joint:
171markerRollingPlane = mbs.AddMarker(MarkerBodyRigid(bodyNumber=oGround, localPosition=vOff))
172#oRolling=mbs.AddObject(ObjectJointRollingDisc(markerNumbers=[markerRollingPlane,markerBody0J1],
173
174if True:
175 oRolling=mbs.AddObject(ObjectJointRollingDisc(markerNumbers=[markerRollingPlane,markerBodyWheel],
176 constrainedAxes=[1,1,1], #note that tangential constraints lead to additional forces on ground ==> changes force on ground!
177 discRadius=r,
178 #planeNormal = planeNormal,
179 visualization=VObjectJointRollingDisc(discWidth=w,color=graphics.color.blue)))
180else:
181 nGeneric = mbs.AddNode(NodeGenericData(initialCoordinates=[0,0,0], numberOfDataCoordinates=3))
182 oRolling=mbs.AddObject(ObjectConnectorRollingDiscPenalty(markerNumbers=[markerRollingPlane,markerBodyWheel],
183 nodeNumber=nGeneric,
184 discRadius=r, discAxis=[1,0,0],
185 planeNormal = planeNormal,
186 contactStiffness=1e5, contactDamping=1e3,
187 dryFriction=[1,1],
188 visualization=VObjectConnectorRollingDiscPenalty(discWidth=w,color=graphics.color.blue)))
189
190sForce = mbs.AddSensor(SensorObject(objectNumber=oRolling, storeInternal=True,
191 outputVariableType = exu.OutputVariableType.ForceLocal))
192
193sTrailVel = mbs.AddSensor(SensorObject(objectNumber=oRolling, storeInternal=True,
194 outputVariableType = exu.OutputVariableType.Velocity))
195
196sAngVel = mbs.AddSensor(SensorBody(bodyNumber=bWheel, storeInternal=True,
197 outputVariableType = exu.OutputVariableType.AngularVelocity))
198sAngVelLocal = mbs.AddSensor(SensorBody(bodyNumber=bWheel, storeInternal=True,
199 outputVariableType = exu.OutputVariableType.AngularVelocityLocal))
200sAngAcc = mbs.AddSensor(SensorBody(bodyNumber=bWheel, storeInternal=True,
201 outputVariableType = exu.OutputVariableType.AngularAcceleration))
202
203mbs.Assemble()
204
205
206simulationSettings = exu.SimulationSettings() #takes currently set values or default values
207useGraphics=False
208tEnd = 0.1
209if useGraphics:
210 tEnd = 2
211
212h = 0.001
213simulationSettings.timeIntegration.endTime = tEnd #0.2 for testing
214simulationSettings.timeIntegration.numberOfSteps = int(tEnd/h)
215#simulationSettings.solutionSettings.solutionWritePeriod = 0.01
216#simulationSettings.solutionSettings.sensorsWritePeriod = 0.01
217simulationSettings.timeIntegration.verboseMode = 1
218
219simulationSettings.timeIntegration.generalizedAlpha.computeInitialAccelerations=True
220
221simulationSettings.timeIntegration.simulateInRealtime = True
222
223SC.visualizationSettings.connectors.showJointAxes = True
224SC.visualizationSettings.connectors.jointAxesLength = 0.3
225SC.visualizationSettings.connectors.jointAxesRadius = 0.08
226SC.visualizationSettings.openGL.lineWidth=2 #maximum
227SC.visualizationSettings.openGL.shadow=0.2
228SC.visualizationSettings.openGL.multiSampling = 4
229
230if useGraphics:
231 exu.StartRenderer()
232 if 'renderState' in exu.sys:
233 SC.SetRenderState(exu.sys['renderState'])
234 mbs.WaitForUserToContinue()
235
236exu.SolveDynamic(mbs, simulationSettings)
237
238if useGraphics:
239 SC.WaitForRenderEngineStopFlag()
240 exu.StopRenderer() #safely close rendering window!
241
242force = mbs.GetSensorValues(sForce)
243u = 1e-3*(abs(force[0]) + abs(force[1]) + abs(force[2]))
244exu.Print('rollingDiscTangentialForces: F=',force) #use x-coordinate
245exu.Print('solution of rollingDiscTangentialForces=',u) #use x-coordinate
246
247exudynTestGlobals.testError = u - (1.0342017388721547)
248exudynTestGlobals.testResult = u
249
250
251if True:
252 from exudyn.plot import PlotSensor
253 PlotSensor(mbs,closeAll=True)
254 PlotSensor(mbs, sensorNumbers=[sForce], components=[0,1,2])
255 # PlotSensor(mbs, sensorNumbers=sAngVel, components=[0,1,2])
256 # PlotSensor(mbs, sensorNumbers=sAngVelLocal, components=[0,1,2])
257 # PlotSensor(mbs, sensorNumbers=sAngAcc, components=[0,1,2])
258
259 # PlotSensor(mbs, sensorNumbers=sTrailVel, components=[0,1])