ALEANCFpipe.py
You can view and download this file on Github: ALEANCFpipe.py
1#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2# This is an EXUDYN example
3#
4# Details: ANCF ALE Cable2D test
5#
6# Author: Johannes Gerstmayr
7# Date: 2019-10-01
8#
9# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
10#
11#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
13import exudyn as exu
14from exudyn.itemInterface import *
15
16SC = exu.SystemContainer()
17mbs = SC.AddSystem()
18#exu.SetOutputPrecision(16)
19
20#background
21rect = [-2.5,-2,2.5,1] #xmin,ymin,xmax,ymax
22background0 = {'type':'Line', 'color':[0.1,0.1,0.8,1], 'data':[rect[0],rect[1],0, rect[2],rect[1],0, rect[2],rect[3],0, rect[0],rect[3],0, rect[0],rect[1],0]} #background
23background1 = {'type':'Line', 'color':[0.1,0.1,0.8,1], 'data':[0,-1,0, 2,-1,0]} #background
24oGround=mbs.AddObject(ObjectGround(referencePosition= [0,0,0], visualization=VObjectGround(graphicsData= [background0])))
25
26#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27#cable:
28mypi = 3.141592653589793
29
30L=2 # length of ANCF element in m
31#L=mypi # length of ANCF element in m
32Em=2.07e11 # Young's modulus of ANCF element in N/m^2
33rho=7800 # density of ANCF element in kg/m^3
34b=0.1 # width of rectangular ANCF element in m
35h=0.1 # height of rectangular ANCF element in m
36A=b*h # cross sectional area of ANCF element in m^2
37I=b*h**3/12 # second moment of area of ANCF element in m^4
38EI = Em*I
39rhoA = rho*A
40EA = Em*A
41movingMassFactor = 1
42vALE = 2.3*1
43
44#f=3*E*I/L**2 # tip load applied to ANCF element in N
45g=9.81
46
47#+++++++++++++++++++++++++++++++++++++++++++++++++
48#paper pipe:
49pipePaper=True
50if pipePaper:
51 L=1
52 vALE = 10 #check sign (direction of fuild?)
53 EI = 10 #*0.01
54 rhoA=10 #fluid+pipe
55 EA = 100000*10 #*10 #not given in paper
56 movingMassFactor = 1 #pipe has 8kg/m and fluid has 2kg/m
57 g=0.1*9.81 #small perturbation
58
59print("L="+str(L))
60print("EI="+str(EI))
61print("EA="+str(EA))
62print("rhoA="+str(rhoA))
63
64nGround = mbs.AddNode(NodePointGround(referenceCoordinates=[0,0,0])) #ground node for coordinate constraint
65mGround = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nGround, coordinate=0)) #Ground node ==> no action
66
67cableList=[] #for cable elements
68nodeList=[] #for nodes of cable
69markerList=[] #for nodes
70
71useALE = True
72
73
74if useALE:
75 nALE = mbs.AddNode(NodeGenericODE2(numberOfODE2Coordinates=1, referenceCoordinates=[0], initialCoordinates=[0], initialCoordinates_t=[vALE]))
76 mALE = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nALE, coordinate=0)) #ALE velocity
77 mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mALE], offset=vALE, velocityLevel = True)) # for static computation
78
79nc0 = mbs.AddNode(Point2DS1(referenceCoordinates=[0,0,1,0]))
80nodeList+=[nc0]
81nElements = 16
82lElem = L / nElements
83for i in range(nElements):
84 nLast = mbs.AddNode(Point2DS1(referenceCoordinates=[lElem*(i+1),0,1,0]))
85 #nLast = mbs.AddNode(Point2DS1(referenceCoordinates=[L*2/3.1415926,L*2/3.1415926,0,1]))
86 nodeList+=[nLast]
87 if useALE:
88 elem=mbs.AddObject(ALECable2D(physicsLength=lElem, physicsMassPerLength=rhoA,
89 physicsBendingStiffness=EI, physicsAxialStiffness=EA, physicsMovingMassFactor=movingMassFactor,
90 nodeNumbers=[nodeList[i],nodeList[i+1],nALE]))
91 else:
92 elem=mbs.AddObject(Cable2D(physicsLength=lElem, physicsMassPerLength=rhoA, physicsBendingStiffness=EI,
93 physicsAxialStiffness=EA, nodeNumbers=[int(nc0)+i,int(nc0)+i+1]))
94
95 cableList+=[elem]
96 mBody = mbs.AddMarker(MarkerBodyMass(bodyNumber = elem))
97 mbs.AddLoad(Gravity(markerNumber=mBody, loadVector=[0,-g,0]))
98
99
100
101mANCF0 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = int(nc0)+1*0, coordinate=0))
102mANCF1 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = int(nc0)+1*0, coordinate=1))
103mANCF2 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = int(nc0)+1*0, coordinate=3))
104
105mANCF3 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nLast, coordinate=0)) #tip constraint
106mANCF4 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nLast, coordinate=1)) #tip constraint
107
108mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF0]))
109mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF1]))
110mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF2]))
111#mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF3]))
112#mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF4]))
113
114#add gravity:
115markerList=[]
116for i in range(len(nodeList)):
117 m = mbs.AddMarker(MarkerNodePosition(nodeNumber=nodeList[i]))
118 markerList+=[m]
119
120
121#a = 0.1 #y-dim/2 of gondula
122#b = 0.001 #x-dim/2 of gondula
123#massRigid = 12*0.01
124#inertiaRigid = massRigid/12*(2*a)**2
125#g = 9.81 # gravity
126#
127#slidingCoordinateInit = lElem*1.5 #0.75*L
128#initialLocalMarker = 1 #second element
129#if nElements<2:
130# slidingCoordinateInit /= 3.
131# initialLocalMarker = 0
132#
133
134mbs.Assemble()
135print(mbs)
136
137simulationSettings = exu.SimulationSettings() #takes currently set values or default values
138#simulationSettings.solutionSettings.coordinatesSolutionFileName = 'ANCFCable2Dbending' + str(nElements) + '.txt'
139#simulationSettings.outputPrecision = 16
140
141fact = 20000
142simulationSettings.timeIntegration.numberOfSteps = 1*fact
143simulationSettings.timeIntegration.endTime = 0.001*fact
144simulationSettings.solutionSettings.writeSolutionToFile = True
145simulationSettings.solutionSettings.solutionWritePeriod = simulationSettings.timeIntegration.endTime/2000
146#simulationSettings.solutionSettings.outputPrecision = 4
147simulationSettings.displayComputationTime = True
148simulationSettings.timeIntegration.verboseMode = 1
149
150simulationSettings.timeIntegration.newton.relativeTolerance = 1e-8 #10000
151simulationSettings.timeIntegration.newton.absoluteTolerance = 1e-10*100
152
153simulationSettings.timeIntegration.newton.useModifiedNewton = False
154simulationSettings.timeIntegration.newton.maxModifiedNewtonIterations = 5
155simulationSettings.timeIntegration.newton.numericalDifferentiation.addReferenceCoordinatesToEpsilon = False
156simulationSettings.timeIntegration.newton.numericalDifferentiation.minimumCoordinateSize = 1.e-3
157simulationSettings.timeIntegration.newton.numericalDifferentiation.relativeEpsilon = 1e-8 #6.055454452393343e-06*0.0001 #eps^(1/3)
158simulationSettings.timeIntegration.newton.modifiedNewtonContractivity = 1e8
159# simulationSettings.timeIntegration.generalizedAlpha.useIndex2Constraints = True
160# simulationSettings.timeIntegration.generalizedAlpha.useNewmark = False
161simulationSettings.timeIntegration.generalizedAlpha.spectralRadius = 0.6 #0.6 works well
162simulationSettings.pauseAfterEachStep = False
163simulationSettings.displayStatistics = True
164
165#SC.visualizationSettings.nodes.showNumbers = True
166SC.visualizationSettings.bodies.showNumbers = False
167#SC.visualizationSettings.connectors.showNumbers = True
168SC.visualizationSettings.nodes.defaultSize = 0.01
169SC.visualizationSettings.markers.defaultSize = 0.01
170SC.visualizationSettings.connectors.defaultSize = 0.01
171SC.visualizationSettings.contact.contactPointsDefaultSize = 0.005
172SC.visualizationSettings.connectors.showContact = 1
173
174simulationSettings.solutionSettings.solutionInformation = "ANCF cable with imposed curvature or applied tip force/torque"
175
176solveDynamic = True
177if solveDynamic:
178 exu.StartRenderer()
179 #mbs.WaitForUserToContinue()
180
181 mbs.SolveDynamic(simulationSettings,
182 solverType=exu.DynamicSolverType.TrapezoidalIndex2)
183
184 SC.WaitForRenderEngineStopFlag()
185 exu.StopRenderer() #safely close rendering window!
186
187else:
188 simulationSettings.staticSolver.newton.numericalDifferentiation.relativeEpsilon = 1e-8 #*100 #can be quite small; WHY?
189 simulationSettings.staticSolver.newton.numericalDifferentiation.doSystemWideDifferentiation = False
190 simulationSettings.staticSolver.verboseMode = 2
191 simulationSettings.staticSolver.numberOfLoadSteps = 20#20*2
192 simulationSettings.staticSolver.loadStepGeometric = True;
193 simulationSettings.staticSolver.loadStepGeometricRange = 1e3;
194
195 simulationSettings.staticSolver.newton.relativeTolerance = 1e-5 #1e-5*100
196 simulationSettings.staticSolver.newton.absoluteTolerance = 1e-10
197 simulationSettings.staticSolver.newton.maxIterations = 20 #50 for bending into circle
198
199 simulationSettings.staticSolver.discontinuous.iterationTolerance = 0.1
200 #simulationSettings.staticSolver.discontinuous.maxIterations = 5
201 simulationSettings.staticSolver.pauseAfterEachStep = False
202 simulationSettings.staticSolver.stabilizerODE2term = 100*0.0
203
204 exu.StartRenderer()
205
206 mbs.SolveStatic(simulationSettings)
207
208 sol = mbs.systemData.GetODE2Coordinates()
209 n = len(sol)
210 print('tip displacement: x='+str(sol[n-4])+', y='+str(sol[n-3]))
211 sol_t = mbs.systemData.GetODE2Coordinates_t()
212 print('vALE='+str(sol_t[0]))
213
214 #print('sol='+str(sol))
215 print('sol_t='+str(sol_t))
216
217
218 SC.WaitForRenderEngineStopFlag()
219 exu.StopRenderer() #safely close rendering window!