ANCFtests2.py
You can view and download this file on Github: ANCFtests2.py
1#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2# This is an EXUDYN example
3#
4# Details: ANCF Cable2D further test file
5# Example shows limitations of static solver: larger bending not possible;
6# larger number of elements (>16) leads to convergence problems
7#
8# Author: Johannes Gerstmayr
9# Date: 2019-11-15
10#
11# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
12#
13#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
14
15import exudyn as exu
16from exudyn.itemInterface import *
17
18SC = exu.SystemContainer()
19mbs = SC.AddSystem()
20
21
22#background
23rect = [-2,-2,2,2] #xmin,ymin,xmax,ymax
24background0 = {'type':'Line', 'color':[0.1,0.1,0.8,1], 'data':[rect[0],rect[1],0, rect[2],rect[1],0, rect[2],rect[3],0, rect[0],rect[3],0, rect[0],rect[1],0]} #background
25oGround=mbs.AddObject(ObjectGround(referencePosition= [0,0,0], visualization=VObjectGround(graphicsData= [background0])))
26
27#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28#cable:
29mypi = 3.141592653589793
30
31L=2 # length of ANCF element in m
32#L=mypi # length of ANCF element in m
33E=2.07e11 # Young's modulus of ANCF element in N/m^2
34rho=7800*10 # density of ANCF element in kg/m^3
35b=0.1 # width of rectangular ANCF element in m
36h=0.1 # height of rectangular ANCF element in m
37A=b*h # cross sectional area of ANCF element in m^2
38I=b*h**3/12 # second moment of area of ANCF element in m^4
39f=3*E*I/L**2 # tip load applied to ANCF element in N
40
41print("load f="+str(f))
42print("EI="+str(E*I))
43
44nGround = mbs.AddNode(NodePointGround(referenceCoordinates=[0,0,0])) #ground node for coordinate constraint
45mGround = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nGround, coordinate=0)) #Ground node ==> no action
46
47cableList=[]
48
49mode = 1
50if mode==0: #treat one element
51 #omega = mypi*2
52 #nc0 = mbs.AddNode(Point2DS1(referenceCoordinates=[0,0,1,0],initialVelocities=[0,-L/2*omega,0,omega])) #initial velocity
53 #nc1 = mbs.AddNode(Point2DS1(referenceCoordinates=[L,0,1,0],initialVelocities=[0, L/2*omega,0,omega])) #initial velocity
54 nc0 = mbs.AddNode(Point2DS1(referenceCoordinates=[0,0,1,0]))
55 nc1 = mbs.AddNode(Point2DS1(referenceCoordinates=[L,0,1,0]))
56
57 mbs.systemData.Info()
58 o0 = mbs.AddObject(Cable2D(name='FirstCable', physicsLength=L, physicsMassPerLength=rho*A, physicsBendingStiffness=E*I, physicsAxialStiffness=E*A, nodeNumbers=[nc0,nc1]))
59 cableList+=[o0]
60
61 myObject = mbs.GetObject('FirstCable')
62 print(myObject)
63 #print(mbs.GetObject(o0))
64
65 mANCF0 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nc0, coordinate=0))
66 mANCF1 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nc0, coordinate=1))
67 mANCF2b = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nc0, coordinate=3))
68
69 mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF0]))
70 mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF1]))
71 mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF2b]))
72
73 #mANCFnode = mbs.AddMarker(MarkerNodePosition(nodeNumber=nc1)) #force
74 #mbs.AddLoad(Force(markerNumber = mANCFnode, loadVector = [0, -10000, 0]))
75 mANCFrigid = mbs.AddMarker(MarkerBodyRigid(bodyNumber=o0, localPosition=[L,0,0])) #local position L = beam tip
76 mbs.AddLoad(Torque(markerNumber = mANCFrigid, loadVector = [0, 0, E*I*0.25]))
77
78 #mbs.systemData.Info()
79
80else: #treat n elements
81 nc0 = mbs.AddNode(Point2DS1(referenceCoordinates=[0,0,1,0]))
82 nElements = 8 #16
83 lElem = L / nElements
84 for i in range(nElements):
85 nLast = mbs.AddNode(Point2DS1(referenceCoordinates=[lElem*(i+1),0,1,0]))
86 elem=mbs.AddObject(Cable2D(physicsLength=lElem,
87 physicsMassPerLength=rho*A,
88 physicsBendingStiffness=E*I,
89 physicsAxialStiffness=E*A,
90 #useReducedOrderIntegration=True,
91 nodeNumbers=[int(nc0)+i,int(nc0)+i+1]))
92 cableList+=[elem]
93
94 mANCF0 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nc0, coordinate=0))
95 mANCF1 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nc0, coordinate=1))
96 mANCF3 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nc0, coordinate=3))
97
98 mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF0]))
99 mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF1]))
100 mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF3]))
101
102 #mANCFLast = mbs.AddMarker(MarkerNodePosition(nodeNumber=nLast)) #force
103 #mbs.AddLoad(Force(markerNumber = mANCFLast, loadVector = [0, -1e8, 0])) #will be changed in load steps
104 #mANCFrigid = mbs.AddMarker(MarkerBodyRigid(bodyNumber=elem, localPosition=[lElem,0,0])) #local position L = beam tip
105 #mbs.AddLoad(Torque(markerNumber = mANCFrigid, loadVector = [0, 0, E*I*0.25*mypi]))
106 mANCFnode = mbs.AddMarker(MarkerNodeRigid(nodeNumber=nLast)) #local position L = beam tip
107 mbs.AddLoad(Torque(markerNumber = mANCFnode, loadVector = [0, 0, 0.5*E*I*mypi]))
108 #mbs.AddLoad(Force(markerNumber = mANCFnode, loadVector = [0, 1e3, 0]))
109
110
111mbs.Assemble()
112#print(mbs)
113
114simulationSettings = exu.SimulationSettings() #takes currently set values or default values
115#simulationSettings.solutionSettings.coordinatesSolutionFileName = 'ANCFCable2Dbending' + str(nElements) + '.txt'
116
117fact = 1000
118simulationSettings.timeIntegration.numberOfSteps = 1*fact
119simulationSettings.timeIntegration.endTime = 0.002*fact
120simulationSettings.solutionSettings.writeSolutionToFile = True
121simulationSettings.solutionSettings.solutionWritePeriod = simulationSettings.timeIntegration.endTime/fact
122simulationSettings.displayComputationTime = False
123simulationSettings.displayStatistics = True
124simulationSettings.timeIntegration.verboseMode = 1
125
126simulationSettings.timeIntegration.generalizedAlpha.useIndex2Constraints = True
127simulationSettings.timeIntegration.generalizedAlpha.useNewmark = True
128simulationSettings.timeIntegration.generalizedAlpha.spectralRadius = 0.6 #0.6 works well
129simulationSettings.timeIntegration.generalizedAlpha.computeInitialAccelerations = False
130
131#SC.visualizationSettings.nodes.showNumbers = True
132SC.visualizationSettings.bodies.showNumbers = False
133#SC.visualizationSettings.connectors.showNumbers = True
134SC.visualizationSettings.nodes.defaultSize = 0.05
135
136simulationSettings.solutionSettings.solutionInformation = "ANCF cable with imposed curvature or applied tip force/torque"
137
138solveDynamic = True
139if solveDynamic:
140 exu.StartRenderer()
141
142 def UFchangeLoad(mbs, t):
143 tt=t
144 if tt > 1:
145 tt=1
146 #mbs.SetLoadParameter(0, 'loadVector', [0, 1e6*tt, 0]) #for force
147 mbs.SetLoadParameter(0, 'loadVector', [0, 0, 2*0.5*E*I*mypi*tt])
148
149 #print('t=',tt,'p=',mbs.GetNodeOutput(nLast, exu.OutputVariableType.Position))
150 return True #True, means that everything is alright, False=stop simulation
151
152 mbs.SetPreStepUserFunction(UFchangeLoad)
153
154
155
156 mbs.SolveDynamic(simulationSettings)
157
158 SC.WaitForRenderEngineStopFlag()
159 exu.StopRenderer() #safely close rendering window!
160
161else:
162 simulationSettings.staticSolver.verboseMode = 1
163 #simulationSettings.staticSolver.loadStepGeometric = True;
164 #.staticSolver.loadStepGeometricRange = 1e2;
165
166 exu.StartRenderer()
167
168 #manual load stepping
169 doLoadStepping = False
170 if doLoadStepping:
171 nLoadSteps = 40;
172 for loadSteps in range(nLoadSteps):
173 loadFact = ((loadSteps+1)/nLoadSteps)
174 simulationSettings.staticSolver.loadStepStart = loadFact
175 simulationSettings.staticSolver.newton.relativeTolerance = 1e-8*loadFact #10000
176
177 loadDict = mbs.GetLoad(0)
178 loadDict['loadVector'] = [0, 0, E*I/L*2*mypi*loadFact]
179 mbs.ModifyLoad(0, loadDict)
180
181 #prescribe curvature:
182 #curvatureValue = 2*((loadSteps+1)/nLoadSteps)
183 #print('curvature='+str(curvatureValue))
184
185 #for nCable in cableList:
186 # cableDict = mbs.GetObject(nCable)
187 # cableDict['physicsReferenceCurvature'] = curvatureValue
188 # cableDict['physicsReferenceAxialStrain'] = 0.1*curvatureValue
189 # mbs.ModifyObject(nCable, cableDict)
190
191 mbs.SolveStatic(simulationSettings)
192
193 sol = mbs.systemData.GetODE2Coordinates()
194 mbs.systemData.SetODE2Coordinates(coordinates=sol, configurationType=exu.ConfigurationType.Initial) #set initial conditions for next step
195
196 print('sol step ' + str(loadSteps) + ':')
197 n = len(sol)
198 print('tip displacement: x='+str(sol[n-4])+', y='+str(sol[n-3]))
199 n2 = int(len(sol)/8)
200 print('mid displacement: x='+str(sol[n2*4])+', y='+str(sol[n2*4+1]))
201
202 else:
203 simulationSettings.staticSolver.numberOfLoadSteps = 8
204 simulationSettings.staticSolver.newton.relativeTolerance = 1e-7
205 simulationSettings.staticSolver.verboseMode = 1
206 simulationSettings.displayStatistics = True
207 mbs.SolveStatic(simulationSettings)
208
209
210 SC.WaitForRenderEngineStopFlag()
211 exu.StopRenderer() #safely close rendering window!