netgenSTLtest.py
You can view and download this file on Github: netgenSTLtest.py
1#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2# This is an EXUDYN example
3#
4# Details: Example to import .stl mesh, mesh with Netgen, create FEM model,
5# reduced order CMS and simulate under gravity
6#
7# Author: Johannes Gerstmayr
8# Date: 2023-04-21
9#
10# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
11#
12#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
14
15import exudyn as exu
16from exudyn.itemInterface import *
17from exudyn.utilities import * #includes itemInterface and rigidBodyUtilities
18import exudyn.graphics as graphics #only import if it does not conflict
19from exudyn.FEM import *
20from exudyn.graphicsDataUtilities import *
21
22SC = exu.SystemContainer()
23mbs = SC.AddSystem()
24
25import numpy as np
26import time
27
28
29#%%+++++++++++++++++++++++++++++++++++++++++++++++++++++
30#netgen/meshing part:
31fem = FEMinterface()
32
33nModes = 16
34
35#steel:
36rho = 7850
37nu=0.3
38Emodulus=1e8#use some very soft material to visualize deformations
39
40#%%+++++++++++++++++++++++++++++++++++++++++++++++++++++
41if True: #needs netgen/ngsolve to be installed to compute mesh, see e.g.: https://github.com/NGSolve/ngsolve/releases
42 import sys
43 import ngsolve as ngs
44 import netgen
45 from netgen.meshing import *
46
47 print('load stl file...')
48 import netgen.stl as nstl
49 #load STL file; needs to be closed (no holes) and consistent!
50 # and may not have defects (may require some processing of STL files!)
51 geom = nstl.STLGeometry('testData/gyro.stl') #Peter's gyro
52
53 maxh=0.01
54 mesh = ngs.Mesh( geom.GenerateMesh(maxh=maxh))
55 # mesh.Curve(1) #don't do that!
56
57 #set True to see mesh in netgen tool:
58 if False: #set this to true, if you want to visualize the mesh inside netgen/ngsolve
59 import netgen.gui #this starts netgen gui; Press button "Visual" and activate "Auto-redraw after (sec)"; Then select "Mesh"
60
61
62 # sys.exit()
63 #%%+++++++++++++++++++++++++++++++++++++++++++++++++++++
64 #Use fem to import FEM model and create FFRFreducedOrder object
65 [bfM, bfK, fes] = fem.ImportMeshFromNGsolve(mesh, density=rho, youngsModulus=Emodulus,
66 poissonsRatio=nu, meshOrder=1)
67
68
69#%%+++++++++++++++++++++++++++++++++++++++++++++++++++++
70#compute Hurty-Craig-Bampton modes
71if True: #now import mesh as mechanical model to EXUDYN
72 print("nNodes=",fem.NumberOfNodes())
73
74
75 cyl=np.array([0,0,0])
76 rCyl = 0.011/2
77 nodesOnCyl = fem.GetNodesOnCylinder(cyl-[0,0.01,0], cyl+[0,0.01,0], radius=rCyl, tolerance=0.001)
78 # #print("boundary nodes bolt=", nodesOnBolt)
79 nodesOnCylWeights = fem.GetNodeWeightsFromSurfaceAreas(nodesOnCyl)
80 pMid = fem.GetNodePositionsMean(nodesOnCyl)
81 print('cyl midpoint=', pMid)
82
83
84 #boundaryList = [nodesOnBolt, nodesOnBolt, nodesOnBushing] #for visualization, use first interface twice
85 boundaryList = [nodesOnCyl]
86
87 print("compute HCB modes... (may take some seconds)")
88 fem.ComputeHurtyCraigBamptonModes(boundaryNodesList=boundaryList,
89 nEigenModes=nModes,
90 useSparseSolver=True,
91 computationMode = HCBstaticModeSelection.RBE2)
92
93 print("eigen freq.=", fem.GetEigenFrequenciesHz())
94
95 #draw cylinder to see geometry of hole
96 # gGround = [graphics.Cylinder([0,0,0],[0,0.02,0], radius=0.011/2, color=graphics.color.dodgerblue, nTiles=128)]
97 # oGround = mbs.AddObject(ObjectGround(referencePosition= [0,0,0], visualization=VObjectGround(graphicsData=gGround)))
98
99
100 #%%+++++++++++++++++++++++++++++++++++++++++++++++++++++
101 #compute stress modes for postprocessing (inaccurate for coarse meshes, just for visualization):
102 if True:
103 mat = KirchhoffMaterial(Emodulus, nu, rho)
104 varType = exu.OutputVariableType.StressLocal
105 print("ComputePostProcessingModes ... (may take a while)")
106 start_time = time.time()
107 fem.ComputePostProcessingModesNGsolve(fes, material=mat,
108 outputVariableType=varType)
109 SC.visualizationSettings.contour.reduceRange=False
110 SC.visualizationSettings.contour.outputVariable = varType
111 SC.visualizationSettings.contour.outputVariableComponent = -1 #norm
112 else:
113 varType = exu.OutputVariableType.DisplacementLocal
114 SC.visualizationSettings.contour.outputVariable = exu.OutputVariableType.DisplacementLocal
115 SC.visualizationSettings.contour.outputVariableComponent = 0
116
117 #%%+++++++++++++++++++++++++++++++++++++++++++++++++++++
118 print("create CMS element ...")
119 cms = ObjectFFRFreducedOrderInterface(fem)
120
121 objFFRF = cms.AddObjectFFRFreducedOrder(mbs, positionRef=[0,0,0],
122 initialVelocity=[0,0,0],
123 initialAngularVelocity=[0,0,0],
124 color=[0.9,0.9,0.9,1.],
125 gravity=[0,0,-9.81]
126 )
127
128 #%%+++++++++++++++++++++++++++++++++++++++++++++++++++++
129 #add markers and joints
130 nodeDrawSize = 0.0005 #for joint drawing
131
132 #add constraint for cylinder
133 if True:
134
135 oGround = mbs.AddObject(ObjectGround(referencePosition= [0,0,0]))
136
137 altApproach = True
138 mCyl = mbs.AddMarker(MarkerSuperElementRigid(bodyNumber=objFFRF['oFFRFreducedOrder'],
139 meshNodeNumbers=np.array(nodesOnCyl), #these are the meshNodeNumbers
140 weightingFactors=nodesOnCylWeights))
141
142 #due to meshing effects and weighting, the center point is not exactly at [0,1.5,0] as intended ...
143 pm0 = mbs.GetMarkerOutput(mCyl, exu.OutputVariableType.Position,exu.ConfigurationType.Reference)
144 print('marker0 ref pos=', pm0)
145
146 mGroundCyl = mbs.AddMarker(MarkerBodyRigid(bodyNumber=oGround,
147 localPosition=pm0,
148 visualization=VMarkerBodyRigid(show=True)))
149 mbs.AddObject(GenericJoint(markerNumbers=[mGroundCyl, mCyl],
150 constrainedAxes = [1]*6,
151 visualization=VGenericJoint(show=False, axesRadius=0.01, axesLength=0.01)))
152
153
154 if False: #activate to animate modes
155 from exudyn.interactive import AnimateModes
156 mbs.Assemble()
157 SC.visualizationSettings.nodes.show = False
158 SC.visualizationSettings.openGL.showFaceEdges = True
159 SC.visualizationSettings.openGL.multiSampling=4
160 SC.visualizationSettings.openGL.lineWidth=2
161 SC.visualizationSettings.window.renderWindowSize = [1600,1080]
162 SC.visualizationSettings.contour.showColorBar = False
163 SC.visualizationSettings.general.textSize = 16
164
165 #%%+++++++++++++++++++++++++++++++++++++++
166 #animate modes of ObjectFFRFreducedOrder (only needs generic node containing modal coordinates)
167 SC.visualizationSettings.general.autoFitScene = False #otherwise, model may be difficult to be moved
168
169 nodeNumber = objFFRF['nGenericODE2'] #this is the node with the generalized coordinates
170 AnimateModes(SC, mbs, nodeNumber, period=0.1, showTime=False, renderWindowText='Hurty-Craig-Bampton: 2 x 6 static modes and 8 eigenmodes\n',
171 runOnStart=True)
172 # import sys
173 # sys.exit()
174
175 #%%+++++++++++++++++++++++++++++++++++++++++++++++++++++
176 #animate modes
177 SC.visualizationSettings.markers.show = True
178 SC.visualizationSettings.markers.defaultSize=nodeDrawSize
179 SC.visualizationSettings.markers.drawSimplified = False
180
181 SC.visualizationSettings.loads.show = False
182
183 SC.visualizationSettings.openGL.multiSampling=4
184 SC.visualizationSettings.openGL.lineWidth=2
185
186 mbs.Assemble()
187
188 simulationSettings = exu.SimulationSettings()
189
190 SC.visualizationSettings.nodes.defaultSize = nodeDrawSize
191 SC.visualizationSettings.nodes.drawNodesAsPoint = False
192 SC.visualizationSettings.connectors.defaultSize = 2*nodeDrawSize
193
194 SC.visualizationSettings.nodes.show = False
195 SC.visualizationSettings.nodes.showBasis = True #of rigid body node of reference frame
196 SC.visualizationSettings.nodes.basisSize = 0.12
197 SC.visualizationSettings.bodies.deformationScaleFactor = 100 #use this factor to scale the deformation of modes
198
199 SC.visualizationSettings.openGL.showFaceEdges = True
200 SC.visualizationSettings.openGL.showFaces = True
201
202 SC.visualizationSettings.sensors.show = True
203 SC.visualizationSettings.sensors.drawSimplified = False
204 SC.visualizationSettings.sensors.defaultSize = 0.01
205
206 h=2e-5 #make small to see some oscillations
207 tEnd = 0.5
208
209 simulationSettings.timeIntegration.numberOfSteps = int(tEnd/h)
210 simulationSettings.timeIntegration.endTime = tEnd
211 simulationSettings.solutionSettings.writeSolutionToFile = False
212 simulationSettings.timeIntegration.verboseMode = 1
213 simulationSettings.timeIntegration.simulateInRealtime = True
214 simulationSettings.timeIntegration.realtimeFactor = 0.01
215 simulationSettings.timeIntegration.newton.useModifiedNewton = True
216
217 simulationSettings.solutionSettings.sensorsWritePeriod = h
218
219 simulationSettings.timeIntegration.generalizedAlpha.spectralRadius = 0.8
220 #simulationSettings.displayStatistics = True
221 simulationSettings.displayComputationTime = True
222
223 SC.visualizationSettings.window.renderWindowSize=[1920,1080]
224 SC.visualizationSettings.openGL.multiSampling = 4
225
226 SC.visualizationSettings.general.autoFitScene=False
227
228 SC.renderer.Start()
229 if 'renderState' in exu.sys: SC.renderer.SetState(exu.sys['renderState']) #load last model view
230
231 SC.renderer.DoIdleTasks() #press space to continue
232
233 mbs.SolveDynamic(simulationSettings=simulationSettings)
234
235 if varType == exu.OutputVariableType.StressLocal:
236 mises = CMSObjectComputeNorm(mbs, 0, exu.OutputVariableType.StressLocal, 'Mises')
237 print('max von-Mises stress=',mises)
238
239 SC.renderer.DoIdleTasks()
240 SC.renderer.Stop() #safely close rendering window!
241
242 # mbs.PlotSensor(sensorNumbers=[sensBushingVel], components=[1])