stiffFlyballGovernor2.py

You can view and download this file on Github: stiffFlyballGovernor2.py

  1#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  2# This is an EXUDYN example
  3#
  4# Details:  Stiff flyball governor with rigid and compliant joints (IFToMM benchmark problem);
  5#           Ref.: https://www.iftomm-multibody.org/benchmark/problem/Stiff_flyball_governor/
  6#           This version uses the newer C++ implemented Lie group solvers
  7#
  8# Model:    Flyball governor as redundant multibody system
  9#
 10# Author:   Johannes Gerstmayr, Stefan Holzinger
 11# Date:     2020-02-13
 12#
 13# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
 14#
 15# *clean example*
 16#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 17
 18## import libaries
 19import exudyn as exu
 20from exudyn.itemInterface import *
 21from exudyn.utilities import * #includes itemInterface and rigidBodyUtilities
 22import exudyn.graphics as graphics #only import if it does not conflict
 23from exudyn.graphicsDataUtilities import *
 24
 25import numpy as np
 26from numpy import linalg as LA
 27
 28## set up MainSystem mbs
 29SC = exu.SystemContainer()
 30mbs = SC.AddSystem()
 31
 32##
 33useCompliantCase = False
 34useLieGroup = useCompliantCase
 35
 36
 37## create background graphics and ground object
 38color = [0.1,0.1,0.8,1]
 39r = 0.2 #radius
 40L = 1   #length
 41
 42background0 = GraphicsDataRectangle(-L,-L,L,L,color)
 43oGround=mbs.AddObject(ObjectGround(referencePosition= [0,0,0], visualization=VObjectGround(graphicsData= [background0])))
 44
 45# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 46## set up body dimensions according to reference in m
 47
 48# shaft
 49lengthShaft = 1     #z
 50widthShaft  = 0.01  #=height
 51
 52# rod
 53lengthRod = 1
 54widthRod  = 0.01    #=height
 55
 56# slider
 57dimSlider = 0.1 #x=y=z
 58sSlider = 0.5
 59
 60# scalar distance between point A and B
 61xAB = 0.1
 62beta0 = np.deg2rad(30)
 63initAngleRod = np.deg2rad(60)
 64
 65# initial angular velocity of shaft and slider
 66omega0 = [0., 0., 0.16*2*np.pi]
 67
 68# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 69## body masses according to reference in kg
 70
 71density = 3000
 72
 73mShaft        = 0.3
 74mRod          = 0.3
 75mSlider       = 3
 76mMassPoint    = 5
 77mRodMassPoint = mRod + mMassPoint
 78
 79
 80# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 81# gravity
 82g = [0,0,-9.81]
 83
 84## setup inertia for rod along x-direction
 85iRod = InertiaCuboid(density=density, sideLengths=[lengthRod,widthRod,0.01])
 86iMass = InertiaMassPoint(mass=mMassPoint).Translated([lengthRod/2,0,0])
 87iRodSum = iRod+iMass
 88
 89#compute reference point of rod (midpoint)
 90refRod = -iRodSum.com
 91iRodSum = iRodSum.Translated(refRod)
 92
 93if useLieGroup:
 94    nodeType = exu.NodeType.RotationRotationVector
 95else:
 96    nodeType = exu.NodeType.RotationEulerParameters
 97
 98
 99nRigidBodyNodes = 4
100#nRB=[-1]*nRigidBodyNodes #final node numbers
101
102## create inertia for shaft and slider
103inertiaList=[InertiaCuboid(density=density, sideLengths=[widthShaft,widthShaft,lengthShaft]),
104             InertiaCuboid(density=density, sideLengths=[dimSlider,dimSlider,dimSlider]),
105             iRodSum, iRodSum]
106
107## set up reference position list
108refPosList=[[0,0,lengthShaft/2], # shaft
109            [0,0,sSlider], # slider
110            [ xAB/2 + (lengthRod/2-refRod[0])*np.cos(beta0), 0, lengthShaft - (lengthRod/2-refRod[0])*np.sin(beta0)], # rodAC
111            [-xAB/2 - (lengthRod/2-refRod[0])*np.cos(beta0), 0, lengthShaft - (lengthRod/2-refRod[0])*np.sin(beta0)]] # rodBD
112
113## set up initial velocity vector list
114refVelList = [[0., 0., 0.], # shaft
115              [0., 0., 0.], # slider
116              [0,omega0[2]*refPosList[2][0],0], # rodAC
117              [0,omega0[2]*refPosList[3][0],0]] # rodBD
118
119## set up initial (global) angular velocity vector list
120refAngularVelList = [omega0,     # shaft
121                     omega0,     # slider
122                     omega0,    # rodAC
123                     omega0]    # rodBD
124
125## create graphics objects for bodies
126graphicsRodAC  = graphics.BrickXYZ(-(lengthRod/2-refRod[0]),-widthRod/2,-widthRod/2, lengthRod/2+refRod[0],widthRod/2,widthRod/2, [0.1,0.1,0.8,1])
127graphicsRodBD  = graphics.BrickXYZ(-lengthRod/2-refRod[0],-widthRod/2,-widthRod/2, lengthRod/2-refRod[0],widthRod/2,widthRod/2, [0.1,0.1,0.8,1])
128graphicsSlider = graphics.BrickXYZ(-dimSlider/2,-dimSlider/2,-dimSlider/2, dimSlider/2,dimSlider/2,dimSlider/2, [0.1,0.1,0.8,1])
129graphicsShaft  = graphics.BrickXYZ(-widthShaft/2,-widthShaft/2,-lengthShaft/2, widthShaft/2,widthShaft/2,lengthShaft/2, [0.1,0.1,0.8,1])
130
131#lists for 4 nodes/bodies: [shaft, slider, rodAC, rodBD]
132graphicsList=[graphicsShaft, graphicsSlider, graphicsRodAC, graphicsRodBD]
133
134#eulerParameters0 = [1, 0, 0, 0]
135rotParList = []
136if nodeType == exu.NodeType.RotationEulerParameters:
137    refRotParList = [eulerParameters0,             # shaft
138                     eulerParameters0,             # slider
139                     RotationMatrix2EulerParameters(RotationMatrixY(beta0)),   # rodAC
140                     RotationMatrix2EulerParameters(RotationMatrixY(-beta0))]  # rodBD
141    refRotMatList = [EulerParameters2RotationMatrix(refRotParList[0]),
142                     EulerParameters2RotationMatrix(refRotParList[1]),
143                     EulerParameters2RotationMatrix(refRotParList[2]),
144                     EulerParameters2RotationMatrix(refRotParList[3])]
145
146elif nodeType == exu.NodeType.RotationRxyz:
147    refRotParList = [[0,0,0],       # shaft
148                     [0,0,0],       # slider
149                     [0,beta0,0],   # rodAC
150                     [0,-beta0,0]]  # rodBD
151    refRotMatList = [RotXYZ2RotationMatrix(refRotParList[0]),
152                     RotXYZ2RotationMatrix(refRotParList[1]),
153                     RotXYZ2RotationMatrix(refRotParList[2]),
154                     RotXYZ2RotationMatrix(refRotParList[3])]
155
156elif nodeType == exu.NodeType.RotationRotationVector:
157    refRotParList = [[0,0,0],       # shaft
158                     [0,0,0],       # slider
159                     [0,beta0,0],   # rodAC
160                     [0,-beta0,0]]  # rodBD
161    refRotMatList = [RotationVector2RotationMatrix(refRotParList[0]),
162                     RotationVector2RotationMatrix(refRotParList[1]),
163                     RotationVector2RotationMatrix(refRotParList[2]),
164                     RotationVector2RotationMatrix(refRotParList[3])]
165
166# add rigid bodies to mbs
167nodeNumberList = [-1]*nRigidBodyNodes
168bodyNumberList = [-1]*nRigidBodyNodes
169for i in range(nRigidBodyNodes):
170    [n0,b0]=AddRigidBody(mainSys = mbs,
171                         inertia = inertiaList[i],
172                         nodeType = str(nodeType),
173                         position = refPosList[i],
174                         velocity = refVelList[i],
175                         rotationMatrix = [],#refRotMatList[i],
176                         rotationParameters = refRotParList[i],
177                         angularVelocity = refAngularVelList[i],
178                         gravity = g,
179                         graphicsDataList = [graphicsList[i]])
180    nodeNumberList[i] = n0
181    bodyNumberList[i] = b0
182
183
184
185
186# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
187## spring-damper parameters for connecting the rods with the slider
188
189# spring
190k  = 8.e5*0.005 # spring stiffness in N/m
191l0 = 0.5  # relaxed spring length in m
192
193# damper
194c = 4.e4*0.005
195
196## connecting points
197# slider
198pointEslider = [dimSlider/2, 0., 0.]
199pointFslider = [-dimSlider/2, 0., 0.]
200
201# connectin points for connecting rods with slider
202connectingPointRodACWithSlider = [refRod[0], 0, 0]
203connectingPointRodBDWithSlider = [-refRod[0], 0, 0]
204
205# connecting points for connecting rods with shaft
206pointA = [xAB/2, 0, lengthShaft/2]
207pointB = [-xAB/2, 0, lengthShaft/2]
208pointARodAC = [-(lengthRod/2-refRod[0]), 0, 0]
209pointARodBD = [(lengthRod/2-refRod[0]), 0, 0]
210
211# connecting point of shaft with ground
212connectingPointShaftWithGround = [0, 0, -lengthShaft/2]
213
214# markers
215markerShaftCOM     = mbs.AddMarker(MarkerBodyRigid(name='markerShaftCOM', bodyNumber=bodyNumberList[0], localPosition=[0,0,0]))
216markerShaftGround  = mbs.AddMarker(MarkerBodyRigid(name='markerShaftGround', bodyNumber=bodyNumberList[0], localPosition=connectingPointShaftWithGround))
217markerShaftPointA  = mbs.AddMarker(MarkerBodyRigid(name='markerShaftPointA', bodyNumber=bodyNumberList[0], localPosition=pointA))
218markerShaftPointB  = mbs.AddMarker(MarkerBodyRigid(name='markerShaftPointB', bodyNumber=bodyNumberList[0], localPosition=pointB))
219
220markerSliderCOM    = mbs.AddMarker(MarkerBodyRigid(name='markerSliderCOM', bodyNumber=bodyNumberList[1], localPosition=[0,0,0]))
221markerSliderPointE = mbs.AddMarker(MarkerBodyRigid(name='markerSliderPointE', bodyNumber=bodyNumberList[1], localPosition=pointEslider))
222markerSliderPointF = mbs.AddMarker(MarkerBodyRigid(name='markerSliderPointF', bodyNumber=bodyNumberList[1], localPosition=pointFslider))
223
224markerRodACShaft   = mbs.AddMarker(MarkerBodyRigid(name='markerRodACShaft', bodyNumber=bodyNumberList[2], localPosition=pointARodAC))
225markerRodACSlider  = mbs.AddMarker(MarkerBodyRigid(name='markerRodACSlider', bodyNumber=bodyNumberList[2], localPosition=connectingPointRodACWithSlider))
226
227markerRodBDShaft   = mbs.AddMarker(MarkerBodyRigid(name='markerRodBDShaft', bodyNumber=bodyNumberList[3], localPosition=pointARodBD))
228markerRodBDSlider  = mbs.AddMarker(MarkerBodyRigid(name='markerRodBDSlider', bodyNumber=bodyNumberList[3], localPosition=connectingPointRodBDWithSlider))
229
230
231
232oGround = mbs.AddObject(ObjectGround())
233markerGround = mbs.AddMarker(MarkerBodyRigid(name='markerGround', bodyNumber=oGround, localPosition=[0,0,0]))
234
235nj2=-1
236
237if not useCompliantCase:
238
239    mbs.AddObject(GenericJoint(markerNumbers=[markerGround, markerShaftGround], constrainedAxes=[1,1,1,1,1,0],
240                                visualization=VObjectJointGeneric(axesRadius=0.01, axesLength=0.1)))
241
242    mbs.AddObject(GenericJoint(markerNumbers=[markerShaftCOM, markerSliderCOM], constrainedAxes=[1*0,1*0,0,1,1,1],
243                                visualization=VObjectJointGeneric(axesRadius=0.01, axesLength=0.1)))
244
245    mbs.AddObject(GenericJoint(markerNumbers=[markerShaftPointA, markerRodACShaft], constrainedAxes=[1,1,1,1,0,1],
246                                visualization=VObjectJointGeneric(axesRadius=0.01, axesLength=0.1)))
247
248    mbs.AddObject(GenericJoint(markerNumbers=[markerShaftPointB, markerRodBDShaft], constrainedAxes=[1,1,1,1,0,1],
249                                visualization=VObjectJointGeneric(axesRadius=0.01, axesLength=0.1)))
250
251else:
252    kj=1e5*0.2
253    dj = kj*0.05
254
255    kj2 = kj*0.05 #rotatory springs can be softer!
256    dj2 = kj2*0.05
257
258    mbs.AddObject(RigidBodySpringDamper(markerNumbers=[markerGround, markerShaftGround],
259                                        stiffness=np.diag([kj,kj,kj,kj2,kj2,0]), damping=np.diag([dj,dj,dj,dj2,dj2,0])))
260
261    mbs.AddObject(RigidBodySpringDamper(markerNumbers=[markerShaftCOM, markerSliderCOM],
262                                        stiffness=np.diag([kj,kj,0,kj2,kj2,kj2]), damping=0*np.diag([dj,dj,0,0,0,0])))
263
264    nj2 = mbs.AddObject(RigidBodySpringDamper(markerNumbers=[markerShaftPointA, markerRodACShaft],
265                                        stiffness=np.diag([kj,kj,kj,kj2,0,kj2]), damping=0.*np.diag([dj,dj,dj,0,0,0])))
266
267    mbs.AddObject(RigidBodySpringDamper(markerNumbers=[markerShaftPointB, markerRodBDShaft],
268                                        stiffness=np.diag([kj,kj,kj,kj2,0,kj2]), damping=0.*np.diag([dj,dj,dj,0,0,0])))
269
270
271
272
273# spring-damper elements
274mbs.AddObject(SpringDamper(markerNumbers=[markerSliderPointE, markerRodACSlider], stiffness=k, damping=c, referenceLength=l0))
275mbs.AddObject(SpringDamper(markerNumbers=[markerSliderPointF, markerRodBDSlider], stiffness=k, damping=c, referenceLength=l0))
276
277mbs.AddSensor(SensorNode(nodeNumber = nodeNumberList[1], fileName='solution/flyballSliderPosition.txt',outputVariableType=exu.OutputVariableType.Position))
278mbs.AddSensor(SensorNode(nodeNumber = nodeNumberList[2], fileName='solution/flyballSliderRotation.txt',outputVariableType=exu.OutputVariableType.Rotation)) #Tait Bryan rotations
279mbs.AddSensor(SensorNode(nodeNumber = nodeNumberList[0], fileName='solution/flyballShaftAngularVelocity.txt',outputVariableType=exu.OutputVariableType.AngularVelocity))
280
281
282# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
283mbs.Assemble()
284
285
286useGraphics=True
287if useGraphics: #only start graphics once, but after background is set
288    exu.StartRenderer()
289    #mbs.WaitForUserToContinue()
290
291# dynamicSolver = exu.MainSolverImplicitSecondOrder()
292
293tEnd = 10
294h = 2e-5 #RK44
295#h = 1e-3
296
297simulationSettings = exu.SimulationSettings() #takes currently set values or default values
298simulationSettings.timeIntegration.explicitIntegration.useLieGroupIntegration = useLieGroup
299
300simulationSettings.timeIntegration.numberOfSteps = int(tEnd/h)
301simulationSettings.timeIntegration.endTime = tEnd
302
303
304SC.visualizationSettings.markers.show = True
305#SC.visualizationSettings.markers.showNumbers = True
306
307#simulationSettings.displayComputationTime = True
308simulationSettings.timeIntegration.verboseMode = 1
309
310simulationSettings.solutionSettings.sensorsWritePeriod = simulationSettings.timeIntegration.endTime/2000
311simulationSettings.solutionSettings.solutionWritePeriod = simulationSettings.timeIntegration.endTime/2000
312
313if nodeType != exu.NodeType.RotationRotationVector:
314    simulationSettings.timeIntegration.generalizedAlpha.computeInitialAccelerations = True
315else:
316    simulationSettings.timeIntegration.generalizedAlpha.computeInitialAccelerations = False
317
318
319solverType = exu.DynamicSolverType.TrapezoidalIndex2
320if useLieGroup:
321    solverType = exu.DynamicSolverType.RK44
322    simulationSettings.timeIntegration.stepSizeSafety = 0.5 #almost no step rejection
323
324mbs.SolveDynamic(simulationSettings, solverType=solverType)
325print(mbs.sys['dynamicSolver'].it)
326
327
328if useGraphics: #only start graphics once, but after background is set
329    exu.StopRenderer() #safely close rendering window!
330
331
332for i in range(4):
333    om=mbs.GetNodeOutput(i,exu.OutputVariableType.AngularVelocity)
334    # exu.Print("om",i,"=",om)
335
336for i in range(4):
337    vel=mbs.GetNodeOutput(i,exu.OutputVariableType.Velocity)
338    # exu.Print("v",i,"=",vel)
339
340for i in range(2):
341    rot=mbs.GetNodeOutput(i+2,exu.OutputVariableType.RotationMatrix)
342    # exu.Print("Rot",i+2,"=",rot)
343
344result = mbs.GetNodeOutput(2,exu.OutputVariableType.Velocity)[1] #y-velocity of bar
345exu.Print('solution of stiffFlyballGovernor=',result)
346
347
348plist=[]
349plist += [mbs.GetObjectOutputBody(objectNumber = bodyNumberList[2], variableType = exu.OutputVariableType.Velocity, localPosition = list(pointARodAC), configuration =
350exu.ConfigurationType.Current)]
351plist += [mbs.GetObjectOutputBody(objectNumber = bodyNumberList[2], variableType = exu.OutputVariableType.Velocity, localPosition = connectingPointRodACWithSlider, configuration =
352exu.ConfigurationType.Current)]
353plist += [mbs.GetObjectOutputBody(objectNumber = bodyNumberList[3], variableType = exu.OutputVariableType.Velocity, localPosition = pointARodBD, configuration =
354exu.ConfigurationType.Current)]
355
356#locU = mbs.GetObjectOutput(objectNumber = nj2, variableType =exu.OutputVariableType.DisplacementLocal)
357#exu.Print('locU=', locU)
358#locR = mbs.GetObjectOutput(objectNumber = nj2, variableType =exu.OutputVariableType.Rotation)
359#exu.Print('locR=', locR)
360
361
362#Rxyz initial velocities:
363#om 0 = [0.         0.         6.28318531]
364#om 1 = [0.         0.         6.28318531]
365#om 2 = [ 0.00000000e+00 -8.54693196e-10  6.28318531e+00]
366#om 3 = [0.00000000e+00 8.54693196e-10 6.28318531e+00]
367#v 0 = [ 0.00000000e+00  0.00000000e+00 -4.90499796e-10]
368#v 1 = [ 0.00000000e+00  0.00000000e+00 -4.90499608e-10]
369#v 2 = [-1.91975841e-16  5.60155553e+00 -4.90500111e-10]
370#v 3 = [ 1.91975841e-16 -5.60155553e+00 -4.90500111e-10]
371
372if useGraphics:
373    import matplotlib.pyplot as plt
374    import matplotlib.ticker as ticker
375    plt.close('all')
376
377    data = np.loadtxt('solution/flyballSliderPosition.txt', comments='#', delimiter=',')
378    #plt.plot(data[:,0], data[:,3], 'r-') #z coordinate of slider
379    #data = np.loadtxt('solution/flyballShaftAngularVelocity.txt', comments='#', delimiter=',')
380    plt.plot(data[:,0], data[:,1], 'b-') #z coordinate of slider
381    plt.plot(data[:,0], data[:,2], 'g-') #z coordinate of slider
382    plt.plot(data[:,0], data[:,3], 'k-') #z coordinate of slider
383
384    data = np.loadtxt('solution/flyballSliderRotation.txt', comments='#', delimiter=',')
385    plt.plot(data[:,0], data[:,1], 'r--') #z coordinate of slider
386    plt.plot(data[:,0], data[:,2], 'g--') #z coordinate of slider
387    plt.plot(data[:,0], data[:,3], 'b--') #z coordinate of slider
388
389    if False:
390        #data = np.loadtxt('solution/flyballSliderPositionRxyz.txt', comments='#', delimiter=',')    #rigid joints?
391        data = np.loadtxt('solution/flyballSliderPositionRK4Rxyz.txt', comments='#', delimiter=',') #compliant joints
392        #plt.plot(data[:,0], data[:,3], 'r:') #z coordinate of slider
393        plt.plot(data[:,0], data[:,1], 'b:') #z coordinate of slider
394        plt.plot(data[:,0], data[:,2], 'g:') #z coordinate of slider
395        plt.plot(data[:,0], data[:,3], 'k:') #z coordinate of slider
396
397#    data = np.loadtxt('solution/flyballSliderPositionRK4Rxyz.txt', comments='#', delimiter=',')
398#    plt.plot(data[:,0], data[:,3], 'g:') #z coordinate of slider
399#    data = np.loadtxt('solution/flyballShaftAngularVelocityRK4Rxyz.txt', comments='#', delimiter=',')
400#    plt.plot(data[:,0], data[:,3], 'k:') #z coordinate of slider
401
402    ax=plt.gca() # get current axes
403    ax.grid(True, 'major', 'both')
404    ax.xaxis.set_major_locator(ticker.MaxNLocator(10))
405    ax.yaxis.set_major_locator(ticker.MaxNLocator(10))
406    plt.tight_layout()
407    plt.show()