openAIgymTriplePendulum.py

You can view and download this file on Github: openAIgymTriplePendulum.py

  1#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  2# This is an EXUDYN example
  3#
  4# Details:  This file shows integration with OpenAI gym by testing a triple pendulum example
  5#
  6# Author:   Johannes Gerstmayr
  7# Date:     2022-05-18
  8#
  9# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
 10#
 11#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 12
 13
 14import exudyn as exu
 15from exudyn.utilities import * #includes itemInterface and rigidBodyUtilities
 16import exudyn.graphics as graphics #only import if it does not conflict
 17from exudyn.artificialIntelligence import *
 18import math
 19import os
 20
 21class InvertedTriplePendulumEnv(OpenAIGymInterfaceEnv):
 22
 23    #**classFunction: OVERRIDE this function to create multibody system mbs and setup simulationSettings; call Assemble() at the end!
 24    #                 you may also change SC.visualizationSettings() individually; kwargs may be used for special setup
 25    def CreateMBS(self, SC, mbs, simulationSettings, **kwargs):
 26
 27        #%%++++++++++++++++++++++++++++++++++++++++++++++
 28        #this model uses kwargs: thresholdFactor
 29        thresholdFactor = 3
 30        if 'thresholdFactor' in kwargs:
 31            thresholdFactor = kwargs['thresholdFactor']
 32
 33        gravity = 9.81
 34        self.length = 1.
 35        width = 0.1*self.length
 36        masscart = 1.
 37        massarm = 0.1
 38        total_mass = massarm + masscart
 39        armInertia = self.length**2*0.5*massarm
 40        self.force_mag = 10.0*2 #must be larger for triple pendulum to be more reactive ...
 41        self.stepUpdateTime = 0.02  # seconds between state updates
 42
 43        background = graphics.CheckerBoard(point= [0,0.5*self.length,-0.5*width],
 44                                              normal= [0,0,1], size=10, size2=6, nTiles=20, nTiles2=12)
 45
 46        oGround=self.mbs.AddObject(ObjectGround(referencePosition= [0,0,0],  #x-pos,y-pos,angle
 47                                           visualization=VObjectGround(graphicsData= [background])))
 48        nGround=self.mbs.AddNode(NodePointGround())
 49
 50        gCart = graphics.Brick(size=[0.5*self.length, width, width],
 51                                           color=graphics.color.dodgerblue)
 52        self.nCart = self.mbs.AddNode(Rigid2D(referenceCoordinates=[0,0,0]));
 53        oCart = self.mbs.AddObject(RigidBody2D(physicsMass=masscart,
 54                                          physicsInertia=0.1*masscart, #not needed
 55                                          nodeNumber=self.nCart,
 56                                          visualization=VObjectRigidBody2D(graphicsData= [gCart])))
 57        mCartCOM = self.mbs.AddMarker(MarkerNodePosition(nodeNumber=self.nCart))
 58
 59        gArm1 = graphics.Brick(size=[width, self.length, width], color=graphics.color.red)
 60        gArm1joint = graphics.Cylinder(pAxis=[0,-0.5*self.length,-0.6*width], vAxis=[0,0,1.2*width],
 61                                          radius=0.0625*self.length, color=graphics.color.darkgrey)
 62        self.nArm1 = self.mbs.AddNode(Rigid2D(referenceCoordinates=[0,0.5*self.length,0]));
 63        oArm1 = self.mbs.AddObject(RigidBody2D(physicsMass=massarm,
 64                                          physicsInertia=armInertia, #not included in original paper
 65                                          nodeNumber=self.nArm1,
 66                                          visualization=VObjectRigidBody2D(graphicsData= [gArm1, gArm1joint])))
 67
 68        mArm1COM = self.mbs.AddMarker(MarkerNodePosition(nodeNumber=self.nArm1))
 69        mArm1JointA = self.mbs.AddMarker(MarkerBodyPosition(bodyNumber=oArm1, localPosition=[0,-0.5*self.length,0]))
 70        mArm1JointB = self.mbs.AddMarker(MarkerBodyPosition(bodyNumber=oArm1, localPosition=[0, 0.5*self.length,0]))
 71
 72        gArm2 = graphics.Brick(size=[width, self.length, width], color=graphics.color.red)
 73        self.nArm2 = self.mbs.AddNode(Rigid2D(referenceCoordinates=[0,1.5*self.length,0]));
 74        oArm2 = self.mbs.AddObject(RigidBody2D(physicsMass=massarm,
 75                                          physicsInertia=armInertia, #not included in original paper
 76                                          nodeNumber=self.nArm2,
 77                                          visualization=VObjectRigidBody2D(graphicsData= [gArm2, gArm1joint])))
 78
 79        mArm2COM = self.mbs.AddMarker(MarkerNodePosition(nodeNumber=self.nArm2))
 80        mArm2Joint = self.mbs.AddMarker(MarkerBodyPosition(bodyNumber=oArm2, localPosition=[0,-0.5*self.length,0]))
 81        mArm2JointB = self.mbs.AddMarker(MarkerBodyPosition(bodyNumber=oArm2, localPosition=[0, 0.5*self.length,0]))
 82
 83        gArm3 = graphics.Brick(size=[width, self.length, width], color=graphics.color.red)
 84        self.nArm3 = self.mbs.AddNode(Rigid2D(referenceCoordinates=[0,2.5*self.length,0]));
 85        oArm3 = self.mbs.AddObject(RigidBody2D(physicsMass=massarm,
 86                                          physicsInertia=armInertia, #not included in original paper
 87                                          nodeNumber=self.nArm3,
 88                                          visualization=VObjectRigidBody2D(graphicsData= [gArm3, gArm1joint])))
 89
 90        mArm3COM = self.mbs.AddMarker(MarkerNodePosition(nodeNumber=self.nArm3))
 91        mArm3Joint = self.mbs.AddMarker(MarkerBodyPosition(bodyNumber=oArm3, localPosition=[0,-0.5*self.length,0]))
 92
 93        mCartCoordX = self.mbs.AddMarker(MarkerNodeCoordinate(nodeNumber=self.nCart, coordinate=0))
 94        mCartCoordY = self.mbs.AddMarker(MarkerNodeCoordinate(nodeNumber=self.nCart, coordinate=1))
 95        mGroundNode = self.mbs.AddMarker(MarkerNodeCoordinate(nodeNumber=nGround, coordinate=0))
 96
 97        #gravity
 98        self.mbs.AddLoad(Force(markerNumber=mCartCOM, loadVector=[0,-masscart*gravity,0]))
 99        self.mbs.AddLoad(Force(markerNumber=mArm1COM, loadVector=[0,-massarm*gravity,0]))
100        self.mbs.AddLoad(Force(markerNumber=mArm2COM, loadVector=[0,-massarm*gravity,0]))
101        self.mbs.AddLoad(Force(markerNumber=mArm3COM, loadVector=[0,-massarm*gravity,0]))
102
103        #control force
104        self.lControl = self.mbs.AddLoad(LoadCoordinate(markerNumber=mCartCoordX, load=1.))
105
106        #joints and constraints:
107        self.mbs.AddObject(RevoluteJoint2D(markerNumbers=[mCartCOM, mArm1JointA]))
108        self.mbs.AddObject(RevoluteJoint2D(markerNumbers=[mArm1JointB, mArm2Joint]))
109        self.mbs.AddObject(RevoluteJoint2D(markerNumbers=[mArm2JointB, mArm3Joint]))
110
111        self.mbs.AddObject(CoordinateConstraint(markerNumbers=[mCartCoordY, mGroundNode]))
112
113
114
115
116        #%%++++++++++++++++++++++++
117        self.mbs.Assemble() #computes initial vector
118
119        self.simulationSettings.timeIntegration.numberOfSteps = 1
120        self.simulationSettings.timeIntegration.endTime = 0 #will be overwritten in step
121        self.simulationSettings.timeIntegration.verboseMode = 0
122        self.simulationSettings.solutionSettings.writeSolutionToFile = False
123        #self.simulationSettings.timeIntegration.simulateInRealtime = True
124
125        self.simulationSettings.timeIntegration.newton.useModifiedNewton = True
126
127        self.SC.visualizationSettings.general.drawWorldBasis=True
128        self.SC.visualizationSettings.general.graphicsUpdateInterval = 0.01 #50Hz
129        self.SC.visualizationSettings.openGL.multiSampling=4
130
131        #self.simulationSettings.solutionSettings.solutionInformation = "Open AI gym"
132
133        #+++++++++++++++++++++++++++++++++++++++++++++++++++++
134        # Angle at which to fail the episode
135        # these parameters are used in subfunctions
136        self.theta_threshold_radians = thresholdFactor* 12 * 2 * math.pi / 360
137        self.x_threshold = thresholdFactor*2.4
138
139        #must return state size
140        stateSize = 8 #the number of states (position/velocity that are used by learning algorithm)
141        return stateSize
142
143    #**classFunction: OVERRIDE this function to set up self.action_space and self.observation_space
144    def SetupSpaces(self):
145
146        high = np.array(
147            [
148                self.x_threshold * 2,
149                np.finfo(np.float32).max,
150                self.theta_threshold_radians * 2,
151                np.finfo(np.float32).max,
152                self.theta_threshold_radians * 2,
153                np.finfo(np.float32).max,
154                self.theta_threshold_radians * 2,
155                np.finfo(np.float32).max,
156            ],
157            dtype=np.float32,
158        )
159
160        #+++++++++++++++++++++++++++++++++++++++++++++++++++++
161        #see https://github.com/openai/gym/blob/64b4b31d8245f6972b3d37270faf69b74908a67d/gym/core.py#L16
162        #for Env:
163        self.action_space = spaces.Discrete(2)
164        self.observation_space = spaces.Box(-high, high, dtype=np.float32)
165        #+++++++++++++++++++++++++++++++++++++++++++++++++++++
166
167
168    #**classFunction: OVERRIDE this function to map the action given by learning algorithm to the multibody system, e.g. as a load parameter
169    def MapAction2MBS(self, action):
170        force = self.force_mag if action == 1 else -self.force_mag
171        self.mbs.SetLoadParameter(self.lControl, 'load', force)
172
173    #**classFunction: OVERRIDE this function to collect output of simulation and map to self.state tuple
174    #**output: return bool done which contains information if system state is outside valid range
175    def Output2StateAndDone(self):
176
177        #+++++++++++++++++++++++++
178        #compute some output:
179        cartPosX = self.mbs.GetNodeOutput(self.nCart, variableType=exu.OutputVariableType.Coordinates)[0]
180        arm1Angle = self.mbs.GetNodeOutput(self.nArm1, variableType=exu.OutputVariableType.Coordinates)[2]
181        arm2Angle = self.mbs.GetNodeOutput(self.nArm2, variableType=exu.OutputVariableType.Coordinates)[2]
182        arm3Angle = self.mbs.GetNodeOutput(self.nArm3, variableType=exu.OutputVariableType.Coordinates)[2]
183        cartPosX_t = self.mbs.GetNodeOutput(self.nCart, variableType=exu.OutputVariableType.Coordinates_t)[0]
184        arm1Angle_t = self.mbs.GetNodeOutput(self.nArm1, variableType=exu.OutputVariableType.Coordinates_t)[2]
185        arm2Angle_t = self.mbs.GetNodeOutput(self.nArm2, variableType=exu.OutputVariableType.Coordinates_t)[2]
186        arm3Angle_t = self.mbs.GetNodeOutput(self.nArm3, variableType=exu.OutputVariableType.Coordinates_t)[2]
187
188        #finally write updated state:
189        self.state = (cartPosX, cartPosX_t, arm1Angle, arm1Angle_t, arm2Angle, arm2Angle_t, arm3Angle, arm3Angle_t)
190        #++++++++++++++++++++++++++++++++++++++++++++++++++
191
192        done = bool(
193            cartPosX < -self.x_threshold
194            or cartPosX > self.x_threshold
195            or arm1Angle < -self.theta_threshold_radians
196            or arm1Angle > self.theta_threshold_radians
197            or arm2Angle < -self.theta_threshold_radians
198            or arm2Angle > self.theta_threshold_radians
199            or arm3Angle < -self.theta_threshold_radians
200            or arm3Angle > self.theta_threshold_radians
201        )
202        return done
203
204
205    #**classFunction: OVERRIDE this function to maps the current state to mbs initial values
206    #**output: return [initialValues, initialValues\_t] where initialValues[\_t] are ODE2 vectors of coordinates[\_t] for the mbs
207    def State2InitialValues(self):
208        #+++++++++++++++++++++++++++++++++++++++++++++
209        #set specific initial state:
210        (xCart, xCart_t, phiArm1, phiArm1_t, phiArm2, phiArm2_t, phiArm3, phiArm3_t) = self.state
211
212        initialValues = np.zeros(12) #model has 4*3 redundant states
213        initialValues_t = np.zeros(12)
214
215        #build redundant cordinates from self.state
216        initialValues[0] = xCart
217        initialValues[3+0] = xCart - 0.5*self.length * sin(phiArm1)
218        initialValues[3+1] = 0.5*self.length * (cos(phiArm1)-1)
219        initialValues[3+2] = phiArm1
220
221        initialValues[6+0] = xCart - self.length * sin(phiArm1) - 0.5*self.length * sin(phiArm2)
222        initialValues[6+1] = self.length * cos(phiArm1) + 0.5*self.length * cos(phiArm2) - 1.5*self.length
223        initialValues[6+2] = phiArm2
224
225        initialValues[9+0] = xCart - self.length * sin(phiArm1) - self.length * sin(phiArm2) - 0.5*self.length * sin(phiArm3)
226        initialValues[9+1] = self.length * cos(phiArm1) + self.length * cos(phiArm2) + 0.5*self.length * cos(phiArm3) - 2.5*self.length
227        initialValues[9+2] = phiArm3
228
229        initialValues_t[0] = xCart_t
230        initialValues_t[3+0] = xCart_t - phiArm1_t*0.5*self.length * cos(phiArm1)
231        initialValues_t[3+1] = -0.5*self.length * sin(phiArm1)  * phiArm1_t
232        initialValues_t[3+2] = phiArm1_t
233
234        initialValues_t[6+0] = xCart_t - phiArm1_t*self.length * cos(phiArm1) - phiArm2_t*0.5*self.length * cos(phiArm2)
235        initialValues_t[6+1] = -self.length * sin(phiArm1)  * phiArm1_t - 0.5*self.length * sin(phiArm2)  * phiArm2_t
236        initialValues_t[6+2] = phiArm2_t
237
238        initialValues_t[9+0] = xCart_t - phiArm1_t*self.length * cos(phiArm1) - phiArm2_t*self.length * cos(phiArm2) - phiArm3_t*0.5*self.length * cos(phiArm3)
239        initialValues_t[9+1] = -self.length * sin(phiArm1)  * phiArm1_t - self.length * sin(phiArm2)  * phiArm2_t - 0.5*self.length * sin(phiArm3)  * phiArm3_t
240        initialValues_t[9+2] = phiArm3_t
241
242        return [initialValues,initialValues_t]
243
244
245
246
247
248
249
250
251
252#%%+++++++++++++++++++++++++++++++++++++++++++++
253if __name__ == '__main__': #this is only executed when file is direct called in Python
254    import time
255
256
257    #%%++++++++++++++++++++++++++++++++++++++++++++++++++
258    #use some learning algorithm:
259    #pip install stable_baselines3
260    from stable_baselines3 import A2C
261
262
263        #create model and do reinforcement learning
264    if False: #'scalar' environment:
265        env = InvertedTriplePendulumEnv() #(thresholdFactor=2)
266        #check if model runs:
267        # env.TestModel(numberOfSteps=1000, seed=42)
268
269        #main learning task; 1e7 steps take 2-3 hours
270        model = A2C('MlpPolicy',
271                    env,
272                    device='cpu',  #usually cpu is faster for this size of networks
273                    #device='cuda',  #usually cpu is faster for this size of networks
274                    verbose=1)
275        ts = -time.time()
276        model.learn(total_timesteps=2000)
277        #model.learn(total_timesteps=2e7)  #not sufficient ...
278        print('*** learning time total =',ts+time.time(),'***')
279
280        #save learned model
281        model.save("openAIgymTriplePendulum1e7d")
282    else:
283        #create vectorized environment, which is much faster for time
284        #  consuming environments (otherwise learning algo may be the bottleneck)
285        #  https://www.programcreek.com/python/example/121472/stable_baselines.common.vec_env.SubprocVecEnv
286        import torch #stable-baselines3 is based on pytorch
287        n_cores= max(1,int(os.cpu_count()/2)) #n_cores should be number of real cores (not threads)
288        #n_cores=14 #should be number of real cores (not threads)
289        torch.set_num_threads(n_cores) #seems to be ideal to match the size of subprocVecEnv
290
291        #test problem with nSteps=400 in time integration
292        #1 core: learning time total = 28.73 seconds
293        #4 core: learning time total = 8.10
294        #8 core: learning time total = 4.48
295        #14 core:learning time total = 3.77
296        #standard DummyVecEnv version: 15.14 seconds
297        print('using',n_cores,'cores')
298
299        from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv
300        vecEnv = SubprocVecEnv([InvertedTriplePendulumEnv for i in range(n_cores)])
301
302
303        #main learning task; 1e7 steps take 2-3 hours
304        model = A2C('MlpPolicy',
305                    vecEnv,
306                    device='cpu',  #usually cpu is faster for this size of networks
307                    #device='cuda',  #optimal with 64 SubprocVecEnv, torch.set_num_threads(1)
308                    verbose=1)
309        ts = -time.time()
310        print('start learning...')
311        #model.learn(total_timesteps=50000)
312        model.learn(total_timesteps=7e7)  #not sufficient ...
313        print('*** learning time total =',ts+time.time(),'***')
314
315        #save learned model
316        model.save("openAIgymTriplePendulum1e7d")
317
318    if False:
319        #%%++++++++++++++++++++++++++++++++++++++++++++++++++
320        #only load and test
321        model = A2C.load("openAIgymTriplePendulum1e7")
322        env = InvertedTriplePendulumEnv(thresholdFactor=15) #larger threshold for testing
323        solutionFile='solution/learningCoordinates.txt'
324        env.TestModel(numberOfSteps=2500, model=model, solutionFileName=solutionFile,
325                      stopIfDone=False, useRenderer=False, sleepTime=0) #just compute solution file
326
327        #++++++++++++++++++++++++++++++++++++++++++++++
328        #visualize (and make animations) in exudyn:
329        from exudyn.interactive import SolutionViewer
330        env.SC.visualizationSettings.general.autoFitScene = False
331        solution = LoadSolutionFile(solutionFile)
332        SolutionViewer(env.mbs, solution) #loads solution file via name stored in mbs