ANCFcantileverTestDyn.py
You can view and download this file on Github: ANCFcantileverTestDyn.py
1#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2# This is an EXUDYN example
3#
4# Details: Test with ANCF cantilever beam; excitation with a coordinate constraint which is changed by preStepExecute function
5#
6# Author: Johannes Gerstmayr
7# Date: 2019-10-25
8#
9# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
10#
11#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
12
13import exudyn as exu
14from exudyn.itemInterface import *
15
16import numpy as np
17
18SC = exu.SystemContainer()
19mbs = SC.AddSystem()
20
21
22#background
23rect = [-10,-10,10,10] #xmin,ymin,xmax,ymax
24background = {'type':'Line', 'color':[0.1,0.1,0.8,1], 'data':[rect[0],rect[1],0, rect[2],rect[1],0, rect[2],rect[3],0, rect[0],rect[3],0, rect[0],rect[1],0]} #background
25oGround=mbs.AddObject(ObjectGround(referencePosition= [0,0,0], visualization=VObjectGround(graphicsData= [background])))
26
27#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
28#cable:
29
30L=2 # length of ANCF element in m
31E=2.07e11 # Young's modulus of ANCF element in N/m^2
32rho=7800 # density of ANCF element in kg/m^3
33b=0.1 # width of rectangular ANCF element in m
34h=0.1 # height of rectangular ANCF element in m
35A=b*h # cross sectional area of ANCF element in m^2
36I=b*h**3/12 # second moment of area of ANCF element in m^4
37f=3*E*I/L**2 # tip load applied to ANCF element in N
38
39print("load f="+str(f))
40
41nGround = mbs.AddNode(NodePointGround(referenceCoordinates=[0,0,0])) #ground node for coordinate constraint
42mGround = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nGround, coordinate=0)) #Ground node ==> no action
43
44mode = 1
45if mode==0: #treat one element
46 nc0 = mbs.AddNode(Point2DS1(referenceCoordinates=[0,0,1,0]))
47 nc1 = mbs.AddNode(Point2DS1(referenceCoordinates=[L,0,1,0]))
48 o0 = mbs.AddObject(Cable2D(physicsLength=L, physicsMassPerLength=rho*A, physicsBendingStiffness=E*I, physicsAxialStiffness=E*A, nodeNumbers=[nc0,nc1]))
49 print(mbs.GetObject(o0))
50
51 mANCF0 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nc0, coordinate=0))
52 mANCF1 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nc0, coordinate=1))
53 mANCF2b = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nc0, coordinate=3))
54
55 mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF0]))
56 ccy=mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF1]),offset=1e-6)
57 mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF2b]))
58
59 mANCFnode = mbs.AddMarker(MarkerNodePosition(nodeNumber=nc1)) #force
60 mbs.AddLoad(Force(markerNumber = mANCFnode, loadVector = [0, 0, 0]))
61
62
63else: #treat n elements
64 nc0 = mbs.AddNode(Point2DS1(referenceCoordinates=[0,0,1,0]))
65 nElements = 16
66 lElem = L / nElements
67 for i in range(nElements):
68 nLast = mbs.AddNode(Point2DS1(referenceCoordinates=[lElem*(i+1),0,1,0]))
69 mbs.AddObject(Cable2D(physicsLength=lElem, physicsMassPerLength=rho*A,
70 physicsBendingStiffness=E*I, physicsAxialStiffness=E*A, nodeNumbers=[int(nc0)+i,int(nc0)+i+1]))
71
72 mANCF0 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nc0, coordinate=0))
73 mANCF1 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nc0, coordinate=1))
74 mANCF2 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nc0, coordinate=3))
75
76 mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF0]))
77 ccy=mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF1]))
78 mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mANCF2]))
79
80 #mANCFLast = mbs.AddMarker(MarkerNodePosition(nodeNumber=nLast)) #force
81 #nl=mbs.AddLoad(Force(markerNumber = mANCFLast, loadVector = [0, -f*0.01, 0])) #will be changed in load steps
82
83
84
85mbs.Assemble()
86print(mbs)
87
88
89
90simulationSettings = exu.SimulationSettings() #takes currently set values or default values
91
92def UFexcitation(mbs, t):
93 mbs.SetObjectParameter(ccy, 'offset', 0.1*np.sin(2*np.pi*20*t))
94 return True #True, means that everything is alright, False=stop simulation
95
96mbs.SetPreStepUserFunction(UFexcitation)
97
98
99fact = 20000
100simulationSettings.timeIntegration.numberOfSteps = 1*fact
101simulationSettings.timeIntegration.endTime = 0.000025*fact
102simulationSettings.solutionSettings.writeSolutionToFile = True
103simulationSettings.solutionSettings.solutionWritePeriod = simulationSettings.timeIntegration.endTime/fact
104simulationSettings.displayComputationTime = True
105simulationSettings.timeIntegration.verboseMode = 1
106
107simulationSettings.timeIntegration.newton.relativeTolerance = 1e-8*1000 #10000
108simulationSettings.timeIntegration.newton.absoluteTolerance = 1e-10*100
109
110simulationSettings.timeIntegration.newton.useModifiedNewton = True
111simulationSettings.timeIntegration.newton.maxModifiedNewtonIterations = 5
112simulationSettings.timeIntegration.newton.numericalDifferentiation.minimumCoordinateSize = 1
113simulationSettings.timeIntegration.newton.numericalDifferentiation.relativeEpsilon = 6.055454452393343e-06*0.1 #eps^(1/3)
114simulationSettings.timeIntegration.newton.modifiedNewtonContractivity = 1000
115simulationSettings.timeIntegration.generalizedAlpha.useIndex2Constraints = False
116simulationSettings.timeIntegration.generalizedAlpha.useNewmark = False
117simulationSettings.timeIntegration.generalizedAlpha.spectralRadius = 0.6
118simulationSettings.displayStatistics = True
119simulationSettings.displayComputationTime = True
120
121#SC.visualizationSettings.nodes.showNumbers = True
122SC.visualizationSettings.bodies.showNumbers = False
123#SC.visualizationSettings.connectors.showNumbers = True
124SC.visualizationSettings.nodes.defaultSize = 0.01
125
126simulationSettings.solutionSettings.solutionInformation = "nonlinear beam oscillations"
127
128exu.StartRenderer()
129mbs.SolveDynamic(simulationSettings)
130SC.WaitForRenderEngineStopFlag()
131exu.StopRenderer() #safely close rendering window!