geneticOptimizationSliderCrank.py

You can view and download this file on Github: geneticOptimizationSliderCrank.py

  1#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  2# This is an EXUDYN example
  3#
  4# Details:  Slider crank model with verification in MATLAB for machine dynamics course
  5#           optionally, the slider crank is mounted on a floating frame, leading to vibrations
  6#           if the system is unbalanced
  7#           Use this example in combination with cmd: 'python resultsMonitor.py solution/geneticSliderCrank.txt'
  8#
  9# Author:   Johannes Gerstmayr
 10# Date:     2019-12-07 (created)
 11#           2021-01-10 (adapted for genetic optimization)
 12#
 13# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
 14#
 15#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 16
 17import exudyn as exu
 18from exudyn.itemInterface import *
 19from exudyn.utilities import * #includes itemInterface and rigidBodyUtilities
 20import exudyn.graphics as graphics #only import if it does not conflict
 21from exudyn.processing import GeneticOptimization, ParameterVariation, PlotOptimizationResults2D
 22
 23import numpy as np #for postprocessing
 24import os
 25from time import sleep
 26
 27useGraphics = False
 28L1=0.1
 29L2=0.3
 30m1=0.4
 31m2=0.2
 32m3=0.1
 33s1opt = -L1*(m2+m3)/m1 #-0.075
 34s2opt = -m3/m2*L2      #-0.15
 35
 36#this is the function which is repeatedly called from ParameterVariation
 37#parameterSet contains dictinary with varied parameters
 38def ParameterFunction(parameterSet):
 39    SC = exu.SystemContainer()
 40    mbs = SC.AddSystem()
 41
 42    #++++++++++++++++++++++++++++++++++++++++++++++
 43    #++++++++++++++++++++++++++++++++++++++++++++++
 44    #store default parameters in structure (all these parameters can be varied!)
 45    class P: pass #create emtpy structure for parameters; simplifies way to update parameters
 46    P.s1=L1*0.5
 47    P.s2=L2*0.5
 48    P.h=0.002
 49    P.computationIndex = ''
 50
 51    # #now update parameters with parameterSet (will work with any parameters in structure P)
 52    for key,value in parameterSet.items():
 53        setattr(P,key,value)
 54
 55    globalSettings = parameterSet['functionData']
 56    stiffness = globalSettings['stiffness']
 57    computationIndex = parameterSet['computationIndex']  #could be used for temporary variables when using multithreading
 58
 59    #++++++++++++++++++++++++++++++++++++++++++++++
 60    #++++++++++++++++++++++++++++++++++++++++++++++
 61    #START HERE: create parameterized model
 62
 63    testCases = 1 #floating body
 64    nGround = mbs.AddNode(NodePointGround(referenceCoordinates=[0,0,0])) #ground node for coordinate constraint
 65    mGround = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nGround, coordinate=0)) #Ground node ==> no action
 66
 67
 68    #++++++++++++++++++++++++++++++++
 69    #floating body to mount slider-crank mechanism
 70    constrainGroundBody = (testCases == 0) #use this flag to fix ground body
 71
 72    #graphics for floating frame:
 73    gFloating = graphics.BrickXYZ(-0.25, -0.25, -0.1, 0.8, 0.25, -0.05, color=[0.3,0.3,0.3,1.])
 74
 75    if constrainGroundBody:
 76        floatingRB = mbs.AddObject(ObjectGround(referencePosition=[0,0,0], visualization=VObjectGround(graphicsData=[gFloating])))
 77        mFloatingN = mbs.AddMarker(MarkerBodyPosition(bodyNumber = floatingRB, localPosition=[0,0,0]))
 78    else:
 79        nFloating = mbs.AddNode(Rigid2D(referenceCoordinates=[0,0,0], initialVelocities=[0,0,0]));
 80        mFloatingN = mbs.AddMarker(MarkerNodePosition(nodeNumber=nFloating))
 81        floatingRB = mbs.AddObject(RigidBody2D(physicsMass=2, physicsInertia=1, nodeNumber=nFloating, visualization=VObjectRigidBody2D(graphicsData=[gFloating])))
 82        mRB0 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nFloating, coordinate=0))
 83        mRB1 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nFloating, coordinate=1))
 84        mRB2 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nFloating, coordinate=2))
 85
 86        #add spring dampers for reference frame:
 87        k=stiffness #stiffness of floating body
 88        d=k*0.01
 89        mbs.AddObject(CoordinateSpringDamper(markerNumbers=[mGround,mRB0], stiffness=k, damping=d))
 90        mbs.AddObject(CoordinateSpringDamper(markerNumbers=[mGround,mRB1], stiffness=k, damping=d))
 91        mbs.AddObject(CoordinateSpringDamper(markerNumbers=[mGround,mRB2], stiffness=k, damping=d))
 92        mbs.AddObject(CoordinateConstraint(markerNumbers=[mGround,mRB2]))
 93
 94
 95
 96    #++++++++++++++++++++++++++++++++
 97    #nodes and bodies
 98    omega=2*pi/60*300 #3000 rpm
 99    M=0.1 #torque (default: 0.1)
100
101    s1L=-P.s1
102    s1R=L1-P.s1
103    s2L=-P.s2
104    s2R=L2-P.s2
105
106    #lambda=L1/L2
107    J1=(m1/12.)*L1**2 #inertia w.r.t. center of mass
108    J2=(m2/12.)*L2**2 #inertia w.r.t. center of mass
109
110    ty = 0.05    #thickness
111    tz = 0.05    #thickness
112
113    graphics1 = graphics.RigidLink(p0=[s1L,0,-0.5*tz],p1=[s1R,0,-0.5*tz],
114                                      axis0=[0,0,1], axis1=[0,0,1],radius=[0.5*ty,0.5*ty],
115                                      thickness=0.8*ty, width=[tz,tz], color=graphics.color.steelblue,nTiles=16)
116
117    graphics2 = graphics.RigidLink(p0=[s2L,0,0.5*tz],p1=[s2R,0,0.5*tz],
118                                      axis0=[0,0,1], axis1=[0,0,1],radius=[0.5*ty,0.5*ty],
119                                      thickness=0.8*ty, width=[tz,tz], color=graphics.color.lightred,nTiles=16)
120
121    #crank:
122    nRigid1 = mbs.AddNode(Rigid2D(referenceCoordinates=[P.s1,0,0],
123                                  initialVelocities=[0,0,0]));
124    oRigid1 = mbs.AddObject(RigidBody2D(physicsMass=m1,
125                                        physicsInertia=J1,
126                                        nodeNumber=nRigid1,
127                                        visualization=VObjectRigidBody2D(graphicsData= [graphics1])))
128
129    #connecting rod:
130    nRigid2 = mbs.AddNode(Rigid2D(referenceCoordinates=[L1+P.s2,0,0],
131                                  initialVelocities=[0,0,0]));
132    oRigid2 = mbs.AddObject(RigidBody2D(physicsMass=m2,
133                                        physicsInertia=J2,
134                                        nodeNumber=nRigid2,
135                                        visualization=VObjectRigidBody2D(graphicsData= [graphics2])))
136
137
138    #++++++++++++++++++++++++++++++++
139    #slider:
140    c=0.025 #dimension of mass
141    graphics3 = graphics.BrickXYZ(-c,-c,-c*2,c,c,0,graphics.color.grey)
142
143    #nMass = mbs.AddNode(Point2D(referenceCoordinates=[L1+L2,0]))
144    #oMass = mbs.AddObject(MassPoint2D(physicsMass=m3, nodeNumber=nMass,visualization=VObjectMassPoint2D(graphicsData= [graphics3])))
145    nMass = mbs.AddNode(Rigid2D(referenceCoordinates=[L1+L2,0,0]))
146    oMass = mbs.AddObject(RigidBody2D(physicsMass=m3, physicsInertia=0.001*m3, nodeNumber=nMass,visualization=VObjectRigidBody2D(graphicsData= [graphics3])))
147
148    #++++++++++++++++++++++++++++++++
149    #markers for joints:
150    mR1Left = mbs.AddMarker(MarkerBodyRigid(bodyNumber=oRigid1, localPosition=    [s1L,0.,0.])) #support point # MUST be a rigidBodyMarker, because a torque is applied
151    mR1Right = mbs.AddMarker(MarkerBodyPosition(bodyNumber=oRigid1, localPosition=[s1R,0.,0.])) #end point; connection to connecting rod
152
153    mR2Left = mbs.AddMarker(MarkerBodyPosition(bodyNumber=oRigid2, localPosition= [s2L,0.,0.])) #connection to crank
154    mR2Right = mbs.AddMarker(MarkerBodyPosition(bodyNumber=oRigid2, localPosition=[s2R,0.,0.])) #end point; connection to slider
155
156    mMass = mbs.AddMarker(MarkerBodyPosition(bodyNumber=oMass, localPosition=[ 0.,0.,0.]))
157    mG0 = mFloatingN
158
159    #++++++++++++++++++++++++++++++++
160    #joints:
161    mbs.AddObject(RevoluteJoint2D(markerNumbers=[mG0,mR1Left]))
162    mbs.AddObject(RevoluteJoint2D(markerNumbers=[mR1Right,mR2Left]))
163    mbs.AddObject(RevoluteJoint2D(markerNumbers=[mR2Right,mMass]))
164
165
166    #prismatic joint:
167    mRigidGround = mbs.AddMarker(MarkerBodyRigid(bodyNumber = floatingRB, localPosition = [L1+L2,0,0]))
168    mRigidSlider = mbs.AddMarker(MarkerBodyRigid(bodyNumber = oMass, localPosition = [0,0,0]))
169
170    mbs.AddObject(PrismaticJoint2D(markerNumbers=[mRigidGround,mRigidSlider], constrainRotation=True))
171
172
173    #user function for load; switch off load after 1 second
174    userLoadOn = True
175    def userLoad(mbs, t, load):
176        setLoad = 0
177        if userLoadOn:
178            setLoad = load
179            omega = mbs.GetNodeOutput(nRigid1,variableType = exu.OutputVariableType.AngularVelocity)[2]
180            if omega > 2*pi*2:
181                #print("t=",t)
182                userLoadOn = False
183        return setLoad
184
185    #loads and driving forces:
186    mRigid1CoordinateTheta = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nRigid1, coordinate=2)) #angle coordinate is constrained
187    #mbs.AddLoad(LoadCoordinate(markerNumber=mRigid1CoordinateTheta, load = M, loadUserFunction=userLoad)) #torque at crank
188    mbs.AddLoad(LoadCoordinate(markerNumber=mRigid1CoordinateTheta, load = M)) #torque at crank
189
190    #write motion of support frame:
191    sFloating = mbs.AddSensor(SensorNode(nodeNumber=nFloating,
192                                         storeInternal=True,
193                                         outputVariableType=exu.OutputVariableType.Position))
194
195    #++++++++++++++++++++++++++++++++
196    #assemble, adjust settings and start time integration
197    mbs.Assemble()
198
199    simulationSettings = exu.SimulationSettings() #takes currently set values or default values
200    tEnd = 3
201
202    simulationSettings.timeIntegration.numberOfSteps = int(tEnd/P.h)
203    simulationSettings.timeIntegration.endTime = tEnd
204
205
206    simulationSettings.solutionSettings.solutionWritePeriod = 2e-3
207    simulationSettings.solutionSettings.writeSolutionToFile = useGraphics
208
209    simulationSettings.timeIntegration.newton.useModifiedNewton = True
210    simulationSettings.timeIntegration.newton.relativeTolerance = 1e-8
211    simulationSettings.timeIntegration.newton.absoluteTolerance = 1e-8
212
213    #++++++++++++++++++++++++++++++++++++++++++
214    #solve index 2 / trapezoidal rule:
215    simulationSettings.timeIntegration.generalizedAlpha.useNewmark = True
216    simulationSettings.timeIntegration.generalizedAlpha.useIndex2Constraints = True
217
218    dSize = 0.02
219    SC.visualizationSettings.nodes.defaultSize = dSize
220    SC.visualizationSettings.markers.defaultSize = dSize
221    SC.visualizationSettings.bodies.defaultSize = [dSize, dSize, dSize]
222    SC.visualizationSettings.connectors.defaultSize = dSize
223
224    #data obtained from SC.renderer.GetState(); use np.round(d['modelRotation'],4)
225    SC.visualizationSettings.openGL.initialModelRotation = [[ 0.87758,  0.04786, -0.47703],
226                                                            [ 0.     ,  0.995  ,  0.09983],
227                                                            [ 0.47943, -0.08761,  0.8732]]
228    SC.visualizationSettings.openGL.initialZoom = 0.47
229    SC.visualizationSettings.openGL.initialCenterPoint = [0.192, -0.0039,-0.075]
230    SC.visualizationSettings.openGL.initialMaxSceneSize = 0.4
231    SC.visualizationSettings.general.autoFitScene = False
232    #SC.renderer.DoIdleTasks()
233
234    if useGraphics:
235        SC.renderer.Start()
236
237    mbs.SolveDynamic(simulationSettings)
238
239    if useGraphics:
240        SC.renderer.DoIdleTasks()
241        SC.renderer.Stop() #safely close rendering window!
242
243    #++++++++++++++++++++++++++++++++++++++++++
244    #evaluate error:
245    #data = np.loadtxt(sensorFileName, comments='#', delimiter=',')
246    data = mbs.GetSensorStoredData(sFloating)
247
248    errorNorm = max(abs(data[:,1])) + max(abs(data[:,2])) #max displacement in x and y direction
249
250    if useGraphics:
251        print("max. oszillation=", errorNorm)
252
253        mbs.PlotSensor(sensorNumbers=[sFloating,sFloating], components=[0,1])
254
255    del mbs
256    del SC
257
258    return errorNorm
259    #++++++++++++++++++++++++++++++++++++++++++
260
261import matplotlib.pyplot as plt
262import matplotlib.ticker as ticker
263
264doOptimize = True
265#now perform parameter variation
266if __name__ == '__main__': #include this to enable parallel processing
267    if doOptimize:
268        import time
269
270        #some data which shall not be optimized, but passed to objectiveFunction (e.g. in variation calculations)
271        functionData = {'stiffness':5000}
272
273        #%%++++++++++++++++++++++++++++++++++++++++++++++++++++
274        #GeneticOptimization
275        start_time = time.time()
276        [pOpt, vOpt, pList, values] = GeneticOptimization(objectiveFunction = ParameterFunction,
277                                             parameters = {'s1':(-L1,L1), 's2':(-L2,L2)}, #parameters provide search range
278                                             parameterFunctionData = functionData,
279                                             numberOfGenerations = 30,
280                                             populationSize = 50,
281                                             elitistRatio = 0.1,
282                                             crossoverProbability = 0.1,
283                                             rangeReductionFactor = 0.5,
284                                             addComputationIndex=True,
285                                             randomizerInitialization=0, #for reproducible results
286                                             #distanceFactor = 0.1, #for this example only one significant minimum
287                                             debugMode=False,
288                                             useMultiProcessing=True, #may be problematic for test
289                                             showProgress=True,
290                                             resultsFile = 'solution/geneticSliderCrank.txt',
291                                             )
292        #exu.Print("--- %s seconds ---" % (time.time() - start_time))
293
294        exu.Print("[pOpt, vOpt]=", [pOpt, vOpt])
295        u = vOpt
296        exu.Print("optimum=",u)
297        # using files:
298        # [pOpt, vOpt]= [{'s1': -0.07497827333782427, 's2': -0.14943029494085874}, 3.4312580948e-05]
299        # optimum= 3.4312580948e-05
300
301        # using internal storage:
302        # [pOpt, vOpt]= [{'s1': -0.07497827333782427, 's2': -0.14943029494085874}, 3.431258094752888e-05]
303        # optimum= 3.431258094752888e-05
304
305        if False:
306            # from mpl_toolkits.mplot3d import Axes3D  # noqa: F401 unused import
307            import matplotlib.pyplot as plt
308
309            plt.close('all')
310            [figList, axList] = PlotOptimizationResults2D(pList, values, yLogScale=True)
311    else:
312        useGraphics = True
313        parameterSet = {'s1':L1*0.5, 's2':L2*0.5, 'h':1e-5}
314        #parameterSet = {'s1':-0.075, 's2':-0.15, 'h':1e-5}
315        ParameterFunction(parameterSet)