rigidRotor3DbasicBehaviour.py

You can view and download this file on Github: rigidRotor3DbasicBehaviour.py

  1#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  2# This is an EXUDYN example
  3#
  4# Details:  Example with 3D rotor, showing basic behaviour of rotor
  5#           show COM, unbalance for low, critical and high rotation speeds
  6#
  7# Author:   Johannes Gerstmayr
  8# Date:     2019-12-05
  9#
 10# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
 11#
 12#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 13import sys
 14sys.path.append('../TestModels')            #for modelUnitTest as this example may be used also as a unit test
 15
 16import exudyn as exu
 17from exudyn.itemInterface import *
 18from exudyn.utilities import * #includes itemInterface and rigidBodyUtilities
 19import exudyn.graphics as graphics #only import if it does not conflict
 20
 21import time
 22import numpy as np
 23
 24SC = exu.SystemContainer()
 25mbs = SC.AddSystem()
 26print('EXUDYN version='+exu.GetVersionString())
 27
 28L=1                     #rotor axis length
 29isSymmetric = True
 30if isSymmetric:
 31    L0 = 0.5            #0.5 (symmetric rotor); position of rotor on x-axis
 32else :
 33    L0 = 0.9            #default: 0.9m; position of rotor on x-axis
 34L1 = L-L0               #
 35m = 2                   #mass in kg
 36r = 0.5*1.5             #radius for disc mass distribution
 37lRotor = 0.2            #length of rotor disk
 38k = 800                 #stiffness of (all/both) springs in rotor in N/m
 39Jxx = 0.5*m*r**2        #polar moment of inertia
 40Jyyzz = 0.25*m*r**2 + 1/12.*m*lRotor**2      #moment of inertia for y and z axes
 41
 42omega0=np.sqrt(2*k/m) #linear system
 43
 44D0 = 0.002              #dimensionless damping
 45d = 2*omega0*D0*m       #damping constant in N/(m/s)
 46
 47f0 = 0*omega0/(2*np.pi) #frequency start (Hz)
 48f1 = 2.*omega0/(2*np.pi) #frequency end (Hz)
 49
 50torque = 0*0.2            #driving torque; Nm ; 0.1Nm does not surpass critical speed; 0.2Nm works
 51eps = 10e-3              # excentricity of mass in y-direction
 52                        #symmetric rotor: 2e-3 gives large oscillations;
 53                        #symmetric rotor: 0.74*2e-3 shows kink in runup curve
 54#k*=1000
 55
 56modeStr=['slow (omega0/2)',
 57         'critical (omega0)',
 58         'fast (2*omega0)' ]
 59mode = 2
 60
 61#add constraint on euler parameters or euler angles
 62#add three cases
 63
 64if mode == 0:
 65    omegaInitial = 0.5*omega0 #initial rotation speed in rad/s
 66elif mode == 1:
 67    omegaInitial = 1*omega0 #initial rotation speed in rad/s
 68    eps *= 0.1
 69    d *= 10
 70elif mode == 2:
 71    omegaInitial = 2*omega0 #initial rotation speed in rad/s
 72
 73tEnd = 50              #end time of simulation
 74steps = 50000           #number of steps
 75
 76fRes = omega0/(2*np.pi)
 77print('symmetric rotor resonance frequency (Hz)= '+str(fRes))
 78print('omega intial (Hz)= '+str(omegaInitial/(2*np.pi)))
 79#print('runup over '+str(tEnd)+' seconds, fStart='+str(f0)+'Hz, fEnd='+str(f1)+'Hz')
 80
 81
 82# #user function for load
 83# def userLoad(t, load):
 84#     #return load*np.sin(0.5*omega0*t) #gives resonance
 85#     if t>40: time.sleep(0.02) #make simulation slower
 86#     return load*Sweep(t, tEnd, f0, f1)
 87#     #return load*Sweep(t, tEnd, f1, f0) #backward sweep
 88
 89# #backward whirl excitation:
 90# amp = 0.10  #in resonance: *0.01
 91# def userLoadBWy(t, load):
 92#     return load*SweepCos(t, tEnd, f0, f1) #negative sign: BW, positive sign: FW
 93# def userLoadBWz(t, load):
 94#     return load*Sweep(t, tEnd, f0, f1)
 95#def userLoadBWx(t, load):
 96#    return load*np.sin(omegaInitial*t)
 97#def userLoadBWy(t, load):
 98#    return -load*np.cos(omegaInitial*t) #negative sign: FW, positive sign: BW
 99
100#background1 = graphics.BrickXYZ(0,0,0,.5,0.5,0.5,[0.3,0.3,0.9,1])
101
102#draw RGB-frame at origin
103p=[0,0,0]
104rDraw = 0.05*r
105lFrame = rDraw*1.2
106tFrame = 0.01*0.15
107backgroundX = graphics.Cylinder(p,[lFrame,0,0],tFrame,[0.9,0.3,0.3,1],12)
108backgroundY = graphics.Cylinder(p,[0,lFrame,0],tFrame*0.5,[0.3,0.9,0.3,1],12)
109backgroundZ = graphics.Cylinder(p,[0,0,lFrame],tFrame*0.5,[0.3,0.3,0.9,1],12)
110black=[0,0,0,1]
111textCOM = {'type':'Text', 'text': 'COM', 'color': black, 'position': [lFrame*1.1,0,0]}
112textSHAFT = {'type':'Text', 'text': 'SHAFT', 'color': black, 'position': [L-L0+0.1,-eps,0]}
113textY = {'type':'Text', 'text': 'Y', 'color': black, 'position': [0,lFrame*1.05,0]}
114textZ = {'type':'Text', 'text': 'Z', 'color': black, 'position': [0,0,lFrame*1.05]}
115
116#rotor is rotating around x-axis
117ep0 = eulerParameters0 #no rotation
118ep_t0 = AngularVelocity2EulerParameters_t([omegaInitial,0,0], ep0)
119print(ep_t0)
120
121p0 = [L0-0.5*L,eps,0] #reference position, displaced by eccentricity eps !
122v0 = [0.,0.,0.] #initial translational velocity
123
124#node for Rigid2D body: px, py, phi:
125n1=mbs.AddNode(NodeRigidBodyEP(referenceCoordinates = p0+ep0,
126                               initialVelocities=v0+list(ep_t0)))
127
128#ground nodes
129nGround0=mbs.AddNode(NodePointGround(referenceCoordinates = [-L/2,0,0]))
130nGround1=mbs.AddNode(NodePointGround(referenceCoordinates = [ L/2,0,0]))
131
132#add mass point (this is a 3D object with 3 coordinates):
133gRotor = graphics.Cylinder([-lRotor*0.2,0,0],[lRotor*0.4,0,0],rDraw,
134                              [0.3,0.3,0.9,1],128)
135gRotor2 = graphics.Cylinder([-L0,-eps,0],[L,0,0],r*0.01*0.25,[0.6,0.6,0.6,1],16)
136gRotorCOM = graphics.Cylinder([-lRotor*0.1,0,0],[lRotor*0.6*0.1,0,0],r*0.01*0.5,
137                                 [0.3,0.9,0.3,1],16)
138gRotor3 = [backgroundX, backgroundY, backgroundZ, textCOM, textY, textZ, textSHAFT]
139rigid = mbs.AddObject(RigidBody(physicsMass=m,
140                                physicsInertia=[Jxx,Jyyzz,Jyyzz,0,0,0],
141                                nodeNumber = n1,
142                                visualization=VObjectRigidBody2D(graphicsData=[gRotor, gRotor2, gRotorCOM]+gRotor3)))
143
144mbs.AddSensor(SensorBody(bodyNumber=rigid,
145                          fileName='solution/rotorDisplacement.txt',
146                          localPosition=[0,-eps,0],
147                          outputVariableType=exu.OutputVariableType.Displacement))
148# mbs.AddSensor(SensorBody(bodyNumber=rigid,
149#                          fileName='solution/rotorAngularVelocity.txt',
150#                          outputVariableType=exu.OutputVariableType.AngularVelocity))
151
152#marker for ground (=fixed):
153groundMarker0=mbs.AddMarker(MarkerNodePosition(nodeNumber= nGround0))
154groundMarker1=mbs.AddMarker(MarkerNodePosition(nodeNumber= nGround1))
155
156#marker for rotor axis and support:
157rotorAxisMarker0 =mbs.AddMarker(MarkerBodyPosition(bodyNumber=rigid, localPosition=[-L0,-eps,0]))
158rotorAxisMarker1 =mbs.AddMarker(MarkerBodyPosition(bodyNumber=rigid, localPosition=[ L1,-eps,0]))
159
160
161#++++++++++++++++++++++++++++++++++++
162mbs.AddObject(CartesianSpringDamper(markerNumbers=[groundMarker0, rotorAxisMarker0],
163                                    stiffness=[k,k,k], damping=[d, d, d],
164                                    visualization=VCartesianSpringDamper(drawSize=0.002)))
165mbs.AddObject(CartesianSpringDamper(markerNumbers=[groundMarker1, rotorAxisMarker1],
166                                   stiffness=[0,k,k], damping=[0, d, d],
167                                   visualization=VCartesianSpringDamper(drawSize=0.002))) #do not constrain x-axis twice
168
169
170#add torque:
171# rotorRigidMarker =mbs.AddMarker(MarkerBodyRigid(bodyNumber=rigid, localPosition=[0,0,0]))
172# mbs.AddLoad(Torque(markerNumber=rotorRigidMarker, loadVector=[torque,0,0]))
173
174#constant velocity constraint:
175constantRotorVelocity = True
176if constantRotorVelocity :
177    mRotationAxis = mbs.AddMarker(MarkerNodeRotationCoordinate(nodeNumber = n1, rotationCoordinate=0))
178    mGroundCoordinate =mbs.AddMarker(MarkerNodeCoordinate(nodeNumber= nGround0, coordinate=0))
179    mbs.AddObject(CoordinateConstraint(markerNumbers=[mGroundCoordinate, mRotationAxis],
180                                       offset=omegaInitial, velocityLevel=True,
181                                       visualization=VCoordinateConstraint(show=False))) #gives equation omegaMarker1 = offset
182
183
184#print(mbs)
185mbs.Assemble()
186#mbs.systemData.Info()
187
188simulationSettings = exu.SimulationSettings()
189simulationSettings.solutionSettings.solutionWritePeriod = 1e-5  #output interval
190simulationSettings.solutionSettings.sensorsWritePeriod = 1e-5  #output interval
191
192descrStr = "Laval rotor, resonance="+str(round(fRes,3))+", "+modeStr[mode]
193simulationSettings.solutionSettings.solutionInformation = descrStr
194
195simulationSettings.timeIntegration.numberOfSteps = steps
196simulationSettings.timeIntegration.endTime = tEnd
197simulationSettings.timeIntegration.generalizedAlpha.useIndex2Constraints = True
198simulationSettings.timeIntegration.generalizedAlpha.useNewmark = True
199
200simulationSettings.timeIntegration.generalizedAlpha.spectralRadius = 1
201SC.visualizationSettings.window.renderWindowSize = [1600,1080]
202SC.visualizationSettings.general.textSize = 22
203
204exu.StartRenderer()              #start graphics visualization
205mbs.WaitForUserToContinue()    #wait for pressing SPACE bar to continue
206
207#simulate some time to get steady-state solution:
208mbs.SolveDynamic(simulationSettings)
209state = mbs.systemData.GetSystemState()
210
211#now simulate the steady state solution and record
212simulationSettings.timeIntegration.numberOfSteps = 10000
213simulationSettings.timeIntegration.endTime = 2.5
214
215#create animations (causes slow simulation):
216createAnimation=True
217if createAnimation:
218    mbs.WaitForUserToContinue()    #wait for pressing SPACE bar to continue
219    simulationSettings.solutionSettings.recordImagesInterval = 0.01
220    if mode == 1:
221        simulationSettings.timeIntegration.endTime = 1
222        simulationSettings.solutionSettings.recordImagesInterval = 0.0025
223    if mode == 2:
224        simulationSettings.timeIntegration.endTime = 0.5
225        simulationSettings.solutionSettings.recordImagesInterval = 0.001
226
227    SC.visualizationSettings.exportImages.saveImageFileName = "images/frame"
228
229    mbs.systemData.SetSystemState(state, configuration=exu.ConfigurationType.Initial)
230    mbs.SolveDynamic(simulationSettings)
231
232#SC.WaitForRenderEngineStopFlag()#wait for pressing 'Q' to quit
233exu.StopRenderer()               #safely close rendering window!
234
235#evaluate final (=current) output values
236u = mbs.GetNodeOutput(n1, exu.OutputVariableType.AngularVelocity)
237print('omega final (Hz)=',u/(2*np.pi))
238#print('displacement=',u[0])
239c = mbs.GetNodeOutput(n1, exu.OutputVariableType.Coordinates)
240c_t = mbs.GetNodeOutput(n1, exu.OutputVariableType.Coordinates_t)
241print("nc=",c)
242print("nc_t=",c_t)
243
244##+++++++++++++++++++++++++++++++++++++++++++++++++++++
245import matplotlib.pyplot as plt
246import matplotlib.ticker as ticker
247
248if True:
249    plt.close('all') #close all plots
250
251    dataDisp = np.loadtxt('solution/rotorDisplacement.txt', comments='#', delimiter=',')
252
253    plt.plot(dataDisp[:,0], dataDisp[:,3], 'b-') #numerical solution
254    plt.xlabel("time (s)")
255    plt.ylabel("z-displacement (m)")
256
257    plt.figure()
258    plt.plot(dataDisp[:,2], dataDisp[:,3], 'r-') #numerical solution
259    plt.xlabel("y-displacement (m)")
260    plt.ylabel("z-displacement (m)")
261
262    #plt.plot(data[n-500:n-1,1], data[n-500:n-1,2], 'r-') #numerical solution
263
264    ax=plt.gca() # get current axes
265    ax.grid(True, 'major', 'both')
266    ax.xaxis.set_major_locator(ticker.MaxNLocator(10))
267    ax.yaxis.set_major_locator(ticker.MaxNLocator(10))
268    plt.tight_layout()
269    plt.show()